quarta-feira, 9 de setembro de 2015

Biological role of Iron

 

Health and diet

Main articles: Iron deficiency and Human iron metabolism (Links= Ctrl+click to open)

Biological role

Iron is abundant in biology. Iron-proteins are found in all living organisms, ranging from the evolutionarily primitivearchaea to humans. The color of blood is due to the hemoglobin, an iron-containing protein. As illustrated by hemoglobin, iron is often bound to cofactors, e.g. in hemes. The iron-sulfur clusters are pervasive and include nitrogenase, the enzymes responsible for biological nitrogen fixation. Influential theories of evolution have invoked a role for iron sulfides in the iron-sulfur world theory.

Structure of Heme b, in the protein additional ligand(s) would be attached to Fe.

Structure of Heme b, in the protein additionalligand(s) would be attached to Fe.

Iron is a necessary trace element found in nearly all living organisms. Iron-containing enzymes and proteins, often containing heme prosthetic groups, participate in many biological oxidations and in transport. Examples of proteins found in higher organisms include hemoglobin, cytochrome (seehigh-valent iron), and catalase.

Bioinorganic compounds

The most commonly known and studied "bioinorganic" compounds of iron (i.e., iron compounds used in biology) are the heme proteins: examples arehemoglobin, myoglobin, and cytochrome P450. These compounds can transport gases, build enzymes, and be used in transferring electrons.Metalloproteins are a group of proteins with metal ion cofactors. Some examples of iron metalloproteins are ferritin and rubredoxin. Many enzymes vital to life contain iron, such as catalase, lipoxygenases, and IRE-BP.

Health and Diet

Iron is pervasive, but particularly rich sources of dietary iron include red meat, lentils, beans, poultry, fish, leaf vegetables,watercress, tofu, chickpeas, black-eyed peas, blackstrap molasses, fortified bread, and fortified breakfast cereals. Iron in low amounts is found in molasses, teff, and farina. Iron in meat (heme iron) is more easily absorbed than iron in vegetables. Although some studies suggest that heme/hemoglobin from red meat has effects which may increase the likelihood ofcolorectal cancer, there is still some controversy,and even a few studies suggesting that there is not enough evidence to support such claims.

Iron provided by dietary supplements is often found as iron(II) fumarate, although iron sulfate is cheaper and is absorbed equally well. Elemental iron, or reduced iron, despite being absorbed at only one third to two thirds the efficiency (relative to iron sulfate), is often added to foods such as breakfast cereals or enriched wheat flour. Iron is most available to the body when chelated to amino acids and is also available for use as a common iron supplement. Often the amino acid chosen for this purpose is the cheapest and most common amino acid, glycine, leading to "iron glycinate" supplements. The Recommended Dietary Allowance (RDA) for iron varies considerably based on age, gender, and source of dietary iron (heme-based iron has higher bioavailability). Infants may require iron supplements if they are bottle-fed cow's milk. Blood donors and pregnant women are at special risk of low iron levels and are often advised to supplement their iron intake.

Uptake and storage

Iron acquisition poses a problem for aerobic organisms, because ferric iron is poorly soluble near neutral pH. Thus, bacteria have evolved high-affinity sequestering agents called siderophores.

After uptake, in cells, iron storage is carefully regulated; "free" iron ions do not exist as such. A major component of this regulation is the protein transferrin, which binds iron ions absorbed from the duodenum and carries it in the blood to cells. In animals, plants, and fungi, iron is often the metal ion incorporated into the heme complex. Heme is an essential component of cytochrome proteins, which mediate redox reactions, and of oxygen carrier proteins such as hemoglobin,myoglobin, and leghemoglobin.

Inorganic iron contributes to redox reactions in the iron-sulfur clusters of many enzymes, such as nitrogenase (involved in the synthesis of ammonia from nitrogen and hydrogen) and hydrogenase. Non-heme iron proteins include the enzymesmethane monooxygenase (oxidizes methane to methanol), ribonucleotide reductase (reduces ribose to deoxyribose; DNA biosynthesis), hemerythrins (oxygen transport and fixation in marine invertebrates) and purple acid phosphatase (hydrolysisof phosphate esters).

Iron distribution is heavily regulated in mammals, partly because iron ions have a high potential for biological toxicity.

Regulation of uptake

Main article: Hepcidin

Iron uptake is tightly regulated by the human body, which has no regulated physiological means of excreting iron. Only small amounts of iron are lost daily due to mucosal and skin epithelial cell sloughing, so control of iron levels is mostly by regulating uptake. Regulation of iron uptake is impaired in some people as a result of a genetic defect that maps to the HLA-H gene region on chromosome 6. In these people, excessive iron intake can result in iron overload disorders, such ashemochromatosis. Many people have a genetic susceptibility to iron overload without realizing it or being aware of a family history of the problem. For this reason, it is advised that people do not take iron supplements unless they suffer from iron deficiency and have consulted a doctor. Hemochromatosis is estimated to cause disease in between 0.3 and 0.8% of Caucasians.

MRI finds that iron accumulates in the hippocampus of the brains of those with Alzheimer's disease and in the substantia nigra of those with Parkinson disease.

 

http://www.wikiwand.com/en/Iron#/Biological_role

 

 

Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.