quarta-feira, 28 de outubro de 2015

Positive thinking: Stop negative self-talk to reduce stress

 

 

Positive thinking helps with stress management and can even improve your health. Practice overcoming negative self-talk with examples provided.

By Mayo Clinic Staff

Is your glass half-empty or half-full? How you answer this age-old question about positive thinking may reflect your outlook on life, your attitude toward yourself, and whether you're optimistic or pessimistic — and it may even affect your health.

Indeed, some studies show that personality traits like optimism and pessimism can affect many areas of your health and well-being. The positive thinking that typically comes with optimism is a key part of effective stress management. And effective stress management is associated with many health benefits. If you tend to be pessimistic, don't despair — you can learn positive thinking skills.

Understanding positive thinking and self-talk

Positive thinking doesn't mean that you keep your head in the sand and ignore life's less pleasant situations. Positive thinking just means that you approach unpleasantness in a more positive and productive way. You think the best is going to happen, not the worst.

Positive thinking often starts with self-talk. Self-talk is the endless stream of unspoken thoughts that run through your head. These automatic thoughts can be positive or negative. Some of your self-talk comes from logic and reason. Other self-talk may arise from misconceptions that you create because of lack of information.

If the thoughts that run through your head are mostly negative, your outlook on life is more likely pessimistic. If your thoughts are mostly positive, you're likely an optimist — someone who practices positive thinking.

The health benefits of positive thinking

Researchers continue to explore the effects of positive thinking and optimism on health. Health benefits that positive thinking may provide include:

  • Increased life span
  • Lower rates of depression
  • Lower levels of distress
  • Greater resistance to the common cold
  • Better psychological and physical well-being
  • Reduced risk of death from cardiovascular disease
  • Better coping skills during hardships and times of stress

It's unclear why people who engage in positive thinking experience these health benefits. One theory is that having a positive outlook enables you to cope better with stressful situations, which reduces the harmful health effects of stress on your body. It's also thought that positive and optimistic people tend to live healthier lifestyles — they get more physical activity, follow a healthier diet, and don't smoke or drink alcohol in excess.

References

See more In-depth

http://www.mayoclinic.org/healthy-lifestyle/stress-management/in-depth/positive-thinking/art-20043950

Weight loss: Gain control of emotional eating

 

 

Find out how emotional eating can sabotage your weight-loss efforts, and get tips to get control of your eating habits.

By Mayo Clinic Staff

Sometimes the strongest food cravings hit when you're at your weakest point emotionally. You may turn to food for comfort — consciously or unconsciously — when facing a difficult problem, feeling stressed or even feeling bored.

Emotional eating can sabotage your weight-loss efforts. It often leads to eating too much, especially too much of high-calorie, sweet and fatty foods. The good news is that if you're prone to emotional eating, you can take steps to regain control of your eating habits and get back on track with your weight-loss goals.

The connection between mood, food and weight loss

Emotional eating is eating as a way to suppress or soothe negative emotions, such as stress, anger, fear, boredom, sadness and loneliness. Major life events or, more commonly, the hassles of daily life can trigger negative emotions that lead to emotional eating and disrupt your weight-loss efforts. These triggers might include:

  • Relationship conflicts
  • Work stress
  • Fatigue
  • Financial pressures
  • Health problems

Although some people eat less in the face of strong emotions, if you're in emotional distress you might turn to impulsive or binge eating, quickly consuming whatever's convenient without enjoyment.

In fact, your emotions can become so tied to your eating habits that you automatically reach for a treat whenever you're angry or stressed without thinking about what you're doing.

Food also serves as a distraction. If you're worried about an upcoming event or stewing over a conflict, for instance, you may focus on eating comfort food instead of dealing with the painful situation.

Whatever emotions drive you to overeat, the end result is often the same. The emotions return, and you likely then bear the additional burden of guilt about setting back your weight-loss goal. This can also lead to an unhealthy cycle — your emotions trigger you to overeat, you beat yourself up for getting off your weight-loss track, you feel bad and you overeat again.

Oct. 03, 2015
References

See more In-depth

 

http://www.mayoclinic.org/healthy-lifestyle/weight-loss/in-depth/weight-loss/art-20047342

Rise of the Microglia

 

 

New research shows that the resident immune cells of the brain are involved in both development and disease

By Diana Kwon October 23, 2015

Microglia, the immune cells of the brain, have long been the underdogs of the glia world, passed over for other, flashier cousins, such as astrocytes. Although microglia are best known for being the brain’s primary defenders, scientists now realize that they play a role in the developing brain and may also be implicated in developmental and neurodegenerative disorders. The change in attitude is clear, as evidenced by the buzz around this topic at this year’s Society for Neuroscience (SfN) conference, which took place from October 17 to 21 in Chicago, where scientists discussed their role in both health and disease.

Activated in the diseased brain, microglia find injured neurons and strip away the synapses, the connections between them. These cells make up around 10 percent of all the cells in the brain and appear during early development. For decades scientists focused on them as immune cells and thought that they were quiet and passive in the absence of an outside invader. That all changed in 2005, when experimenters found that microglia were actually the fastest-moving structures in a healthy adult brain. Later discoveries revealed that their branches were reaching out to surrounding neurons and contacting synapses. These findings suggested that these cellular scavengers were involved in functions beyond disease.

The Brain’s Sculptors
The discovery that microglia were active in the healthy brain jump-started the exploration into their underlying mechanisms: Why do these cells hang around synapses? And what are they doing?

For reasons scientists don’t yet understand, the brain begins with more synapses than it needs. “As the brain is making its [connections], it’s also eliminating them,” says Cornelius Gross, a neuroscientist at the European Molecular Biology Laboratory. Microglia are critical to this process, called pruning: they gobble up synapses, thus helping to sculpt the brain by eliminating unwanted connections.* But how do microglia know which synapses to get rid of and which to leave alone?

New evidence suggests that a protective tag that keeps healthy cells from being eaten by the body’s immune system may also shield against microglial activity in the brain. Emily Lehrman, a doctoral candidate in neuroscientist Beth Stevens’s laboratory at Boston’s Children’s Hospital, presented these unpublished findings at this year’s SfN. The [protective tag]’s receptor is highly expressed in microglia during peak pruning,” Lehrman says. Without an abundance of this receptor, the tag is unable to protect the cells, leading to excess engulfment by microglia and overpruning of neuronal connections.* 

But pruning is not always a bad thing. Other molecules work to ensure that microglia remove weak connections, which can be detrimental to brain function. Cornelius Gross, a neuroscientist at the European Molecular Biology Laboratory, and his research group have been investigating the activity of fractalkine, a key molecule in neuron-microglia signaling whose receptors are found exclusively on microglia. “Microglia mature in a way that matches synaptogenesis, which sets up the hypothesis that neurons are calling out to microglia during this period,” Gross says.

His lab found that removing the receptor for fractalkine created an overabundance of weak synaptic contacts caused by deficient synaptic pruning during development in the hippocampus, a brain area involved in learning and memory. These pruning problems led to decreased functional connectivity in the brain, impaired social interactions and increased repetitive behavior—all telltale signs of autism. Published last year in Nature Neuroscience (Scientific American is part of Springer Nature), this work was also presented at the conference.

When Pruning Goes Awry
Studies have also found evidence for increased microglial activation in individuals with schizophrenia and autism; however, whether increased microglial activity is a cause or effect of these diseases is unclear. “We still need to understand whether pruning defects are contributing to these developmental disorders,” Stevens says.

Some findings are emerging from studies on Rett syndrome, a rare form of autism that affects only girls. Dorothy Schafer, now at the University of Massachusetts Medical School, studied microglia’s role in Rett syndrome while she was a postdoctoral researcher in Stevens’s lab. Using mice with mutations in MECP2, the predominant cause of the disease, she found that while microglia were not engulfing synapses during early development, the phagocytic capacity (or the gobbling ability) of these cells increased during the late stages of the disease. These unpublished results suggest that microglia were responding secondarily to a sick environment and partially resolve a debate going on about what microglia do in Rett syndrome—in recent years some studies have shown that microglia can arrest the pathology of disease, whereas others have indicated that they cannot. “Microglia are doing something, but in our research, it seems to be a secondary effect,” Shafer says. “What’s going on is still a huge mystery.”

Return of the Pruning Shears
As the resident immune cells, microglia act as sentinels, sensing and removing disturbances in the brain. When the brain is exposed to injury or disease, microglia surround the damaged areas and eat up the remains of dying cells. In Alzheimer’s disease, for example, microglia are often found near the sites of beta-amyloid deposits, the toxic clumps of misfolded proteins that appear in the brain of affected people. On one hand, microglia may delay the progression of disease by clearing cellular debris. But it is also possible that they are contributing to disease.

Early synapse loss is a hallmark of many neurodegenerative disorders. Growing evidence points to the possibility that microglial pruning pathways seen in early development may be reactivated later in life, leading to disease. Unpublished data from Stevens’s lab presented at the conference suggest that microglia are involved in the early stages of Alzheimer’sand that blocking microglia’s effects could reduce the synapse loss seen in Huntington’s disease.

As a newly burgeoning field, there are still more questions than answers. Next year’s conference is likely to bring us closer to understanding what these dynamic cells are doing in the brain. Once the underdogs, microglia may be the key to future therapeutics for a wide variety of psychiatric and neurodegenerative disorders.

*Clarification (10/27/15): Text updated to provide attribution.

 

http://www.scientificamerican.com/article/rise-of-the-microglia/?WT.mc_id=SA_MB_20151028

Nine reasons why the Barber Vintage Festival is the one motorcycle event you cannot say 'no' to

 

 

There's something for everyone at the Barber Vintage Festival

There's something for everyone at the Barber Vintage Festival (Credit: Somer Hooker / Gizmag)

Image Gallery (160 images)

Every October there’s a three day party in Birmingham, Alabama, for motorcyclists of all persuasions. Unlike most brand-specific get togethers, this event honors one and all, from the beginnings of motorcycling history to the wonderous two-wheeled technology of today. The event is kid-friendly, exceptionally well organized, incredibly welcoming and spotlessly clean.

  •  

    Pair of British Matchless singles in the swap meet - the red G-85 was one of ...
  • It's a ride in and out motorcycle show all weekend long here at the museum
  • The list of things John Britten designed is staggering, this is one of his engines
  • Another Bryan Fuller custom creation in the fan zone

It’s called the Barber Vintage Festival and it’s unlike any other event in the world.

Here are the nine reasons why the Barber Vintage Festival is the one motorcycle happening you cannot say no to.

Britten the featured marque in 2015

Every year Barber Vintage Festival picks a theme to expand upon, and as this year is the 20th anniversary of the passing of legendary New Zealand motorcycle designer John Britten, it presented the perfect opportunity to host a tribute to his work.

Nine of the 10 existing Britten motorcycles were on hand, including the famed "Streamliner," as was the Britten family. To a Britten enthusiast, getting eyes-on just once in a lifetime might have to do, so to see them running in a pack on the track, racing in AHRMA and all displayed together in the Barber Museum was such a rare sight – even John Britten himself never got to see it.

The tale of John Britten is a fairytale equally enchanting as that of fellow-Kiwi Burt Monro, who gained international acclaim for his home-grown innovation thanks to the movie The World's Fastest Indian.

Britten was another motorcycle innovator from New Zealand, who put a whole new spin on "homebuilt" motorcycles. Built from the ground up, each of his V-twin motorcycles was a spectacular vision of "outside-the-box" thinking and captured the imagination of the world. In the early 90’s he brought an example to Daytona and was allowed to run it in Battle of the Twins where he made quite the display as his rider rode the rear wheel, flashing the peace sign to spectators as the competition tried to catch them. Sadly, John succumbed to cancer at age 45, robbing us all of what might have been.

Brittens were sold with a tuning laptop in each crate which was remarkably innovative for the time. Expensive even then, (prices varied, but around US$75,000 seems to be the range), they are now among the most treasured motorcycles in the world and easily worth more than 10 times that now.

With only 10 Brittens on the planet, George Barber saw to it that nine of them made it to the Vintage Festival. Think about that for a moment – that's 90 percent of the entire production run in one spot, turning the Barber Festival into an defacto Britten festival.

Indeed, one of them was already there, because George Barber invested in John Britten’s dream early on and was one of the first buyers. He is to this day an original owner of the first Britten group. Those who attended the annual Motorcycles by Moonlight museum charity dinner got to see them all in one room. This proved to be much more intoxicating then any of the beverages served, at least until the next day when five were paraded on the track at once, with a couple on the back wheel in true Britten fashion.

Kirsteen Britten, John’s wife, was on hand to speak about John’s life and passion. She also flagged off the parade lap with the bikes on the track

Five Brittens on the track at once: never before and probably never again

Kirsteen Britten leads the parade of Brittens while seated on the back of George Barber’s Porsche Spyder

 

George Barber and his staff

The Southern gentleman turned around on the tram. "Is everything all right? Is there anything you need?" He had white hair and look of concern as we rode around the track. None other than Mr. George Barber himself was sampling the service being provided at the grounds that bear his name. He patiently moves through the crowds like a host at a Derby Day party, making sure everyone is content and everything is sufficient. One of the hallmarks of the Barber Vintage Festival is plain old Southern Hospitality.

Some meets have organizers and staff that interact with their patrons more like taskmasters with whips. Not so at Barber’s. All staff will treat you with courtesy and genuine concern. They want to make sure you’re happy and help if you’re not. It’s important to ask and listen, to learn to improve. It’s a mandate that comes directly from the top, Mr. Barber himself. And it’s the secret sauce to how they always manage to take it up several notches every year.

The gentleman who makes it all possible, George Barber

The Museum and Grounds

It’s the first thing you see when you enter the park and frankly, it’s just plain majestic. Five stories of poured concrete with a glass front that brings to mind more upscale hotel than motorcycle museum. Barbers is often described as an 850 acre botanical garden with a race track and what is commonly regarded as the best motorcycle museum in the world. The grounds are spotless, and the crowds at BVF respect that.

There is a huge camp area and it’s popular, with good bathrooms and lovely views. The ground staff knows what’s nesting here, what has babies, and concern for the surrounding environmentally sensitive river is paramount.

The race track is sold out most of the year for track days and corporate functions, Porsche and Mercedes have offices on the grounds. So while it’s probably true that the grounds and racetrack each sets a world standard, it’s the museum that stands alone in it’s unlikely to ever be contested "Best In The World" status.

The state of the art dedicated building holds roughly 1600 motorcycles and is currently undergoing an expansion that will double its size. Inside the vast collection is the largest Lotus car collection in the world as well as many machines a staunch enthusiast will recognize as the core MOMA Art of the Motorcycle exhibit. You could easily spend a day in the museum alone and many do just that.

 

The Racing

Sparse grids, single file races? Not at Barbers. This is the race entrants look forward to all year, so much so that AHRMA, the series that sanctions the weekend had to find a way to limit entry’s by requiring pre-Barber qualifier races in order to get in.

The resulting full grids, top name racers and busy paddock make for outstanding spectating. The best part? It’s all included in the price of your standard BVF gate admission. If you get tired of watching the road races (which includes the Century race and of course the Britten on track exhibition), there’s vintage MX dirt track racing thru the surrounding woods as well.

 

The Motorcycle Swap meet

The swap meet has six hundred vendor spaces and sells out months before the event. and the Barber staff works hard to keep the focus on small vendors. Jeff Ray CEO noted years ago that when one mega meet kept increasing its fees due to popularity, the smaller guys got nudged out. Soon it was nothing but professionals selling reproduction parts and services.

He realized that attendees have a "lust for rust," that they like to find those small treasures like the Pickers do. In fact the swap meet has a pickers contest. The entrants with the most unusual item entered, are awarded a trophy and a free space the next year.

Vendors have been known to make sales just as they pull in

 

The Century Race

Early on the Museum began "The Race of the Century." To enter, participants had to have a motorcycle at least 100 years old. Each year the field got larger and the speeds faster. By 2012 (1912) better brakes and dual speed rear ends were making it really interesting. Last year they realized that they were now getting into the era of 3 speed transmissions and big V-twins. Speeds would be approaching 80+ mph. The focus shifted to a parade lap for 100+ year old motorcycles. The happy result is the Indian – Harley wars might never end. At least not while Barber is offering such a choice battlefield.

The year the field consisted of a couple of Harley Davidsons that had been battle tested in a Cannonball cross country run, a Triumph single and an Indian V-twin.

Another facet of the mid-day activities on Saturday is a parade lap of honor for any machine that had participated in the Cannonball race, a cross country rally for pre-1936 or pre 1916 motorcycles depending on the year. It’s quite a show – the gambit ran from flat tank Harley Davidsons to Art Deco BMWs.

Crossing the finish line always feels good – 1929 101 Indian Scout

Motorcycles On Parade

We’ve all heard the term "Three Ring Circus," where three separate shows were going on at once under the Big Top. Multiply that times three at The Barber Vintage Festival.

Early on the VJMC (Vintage Japanese Motorcycle Club) and AMCA (Antique Motorcycle Club of America) became one of the foundations for the festival. Each club was given an area to stage a ride-in bike show. It was popular and as the festival grew, more shows sprung up; formally and informally. Motorcycle Classics magazine took over the formal task of the "main" bike show and with the promise of the winner making the magazine owners started turning up with bikes from all 49 states. Soon Ace Café joined the party with one of their own as well – for an additional fee you could enter its build-off show and sip adult beverages while watching the races (by paying admission to a private area).

 

The Art

One of the most unexpected things about Barbers is the applications of art in its public spaces. They vary from whimsical (like the giant ants carrying away a motorcycle and rider as well as a giant Coca Cola bottle), the ultra-serious (The Ted Gall sculpture "The Chase" on the museum’s front lawn) and the iconic (the giant spider in the race track front straight grass by the Charlotte’s Web turn). A walk around the track might take you past a pride of lions on the hunt, an Indian totem, giant flowers with spinning petals, Don Quixote on his horse, and a man seemingly drowning in a lake known as the "Zombie Frenchman." Art is all throughout the museum too and it’s not just interesting, it’s remarkably clever – a real car in parts displayed to resemble a giant model car kit, and "trees" made of motorcycles that seem to grow thru the museums floors are but two examples of many. It’s not a stretch to suggest a visit here for the art and artistic displays alone.

 

Thrill Shows

One of the favorite past times at any motorcycle event is the Motorcycle Thrill Show and like everything else at Barber’s they deliver three times more entertainment than you might expect. The traditional stunt show is taken over the top (literally) by the On The Edge motorcycle stunt show. Based in the UK this accomplished quartet of trials bike experts pull off the impossible numerous times a day.

Nestled in the fan zone is a strange looking metal mesh ball that houses as many as three genuine "daredevil" riders at a time all somehow managing to miss each other as they ride inside the sphere fast enough to glue themselves with centrifugal force upside down at speeds up to 60 mph. The three "man" team is actually two guys and a gal and the crowd loves that reveal, which is saved until the end. More surprising is that this, like many carnival shows, is a family business and the globe (and show) date back to 1912 when the Uris family took it on the road.

Completing the trio is an old fashioned Wall of Death. This mother of all carnival shows is run by the American Motor Drone Company and showcases the vintage American sport of board track racing using antique Indian and Harley Davidson motorcycles. Fans stand inches from the riders who scream by and grab dollar bills from the crowd as the whole platform sways with the force of the machines inside it. If you have never seen it this authentic (and memorable) piece of Americana it’s like stepping thru a doorway back in time.

 

Want to attend the Barber Vintage Festival in 2016?

Plan ahead. Camping and swap meet spots sell out in days once sales open. This year’s crowd of 69,000 attendees was a record but there were almost no lines to get in or anywhere else, and buying your $60 (or less with advance purchase) three day pass is part of that lovely no-waiting-in-line process. The website is really informative, check out this link for the FAQ.

In the meantime, take a closer look at all of these reasons (and more) to put this ebent on your agenda in our extensive Barber Festival photo gallery.

 

http://www.gizmag.com/barber-vintage-festival-motorcycle-show/40056

Northrop Grumman chosen to build next US strategic bomber

 

 

The design and specifications of the Northrop Grumman bomber are still highly classified, as is implied ...

The design and specifications of the Northrop Grumman bomber are still highly classified, as is implied in this still from a recent Northrop advert (Credit: Northrop Grumman)

The US Air Force has awarded a US$21.4 billion contract for its Long Range Strike Bomber (LRS-B) to Northrop Grumman. The next generation of strategic bombers will replace the aging fleets of B-52s and B-2s, and will be capable of carrying heavy or nuclear payloads against new generations of anti-aircraft systems.

The contract is a bit of a surprise, since Northrop Grumman is only a sixth of the size of Lockheed Martin and Boeing, who were partners in a rival bid. However, Northrop has strong experience in stealth technology and bomber construction, which seems to have offset the partnership's advantages of size.

Operating on a budget based on the Northrop's bid and an independent assessment to prevent underbidding, the two-part contract covers development and production spread over two decades. The first part is the US$21.4 billion for Engineering and Manufacturing Development (EMD) to cover development costs with incentives against overruns. The balance covers 80 to 100 LRS-B aircraft to be built in five tranches of 21 aircraft with production extending into the 2040s. Cost per aircraft is estimated at US$511 million each, depending on the number purchased.

The next generation bomber may be based in part on the B-2 Spirit bomber

The LRS-B is expected to enter service by the mid 2020s and though its specifics are still highly classified, it's likely to be based on the still-secret RQ-180 unmanned surveillance aircraft and the B-2 Spirit bomber currently in service. Based on the program requirements, it will be capable of carrying out missions involving strategic bombing, tactical bombing, and global strike, surveillance, reconnaissance, intelligence, and electronic attack. It will also carry nuclear weapons, but, due to arms control treaties, not until older nuclear bombers start retiring.

One goal of the LRS-B is to avoid the massive cost overruns of previous defense aircraft programs by relying on existing technology where possible to prevent spiralling development costs, which left the B-1 and B-2 programs as rumps of their intended deployments. The LRS-B will probably be lighter and smaller than the B-2, though with better aerodynamics and efficiency. The latter is particularly important because the high-tech B-2 is only as efficient as a B-52.

According to Air Force acquisition chief William LaPlante in an interview withAviation Weekly, the LRS-B will use lessons learned from previous warplane projects and includes technologies that are already under development and even operational, though their exact nature is classified. The bomber will use more advanced materials and greater stealth. It will also use open architecture to allow for upgrades without major alterations and testing, which will help to keep down development and maintenance costs.

"The LRS-B will provide our nation tremendous flexibility as a dual-capable bomber and the strategic agility to respond and adapt faster than our potential adversaries," says Geneal Mark A. Welsh III, Chief of Staff of the Air Force. "We have committed to the American people to provide security in the skies, balanced by our responsibility to affordably use taxpayer dollars in doing so. This program delivers both while ensuring we are poised to face emerging threats in an uncertain future."

Sources: Northrop Grumman, US Air Force

Turbinas eólicas

 

 

Wind_Turbines_(5132099985)

Universidade Federal do Rio de Janeiro

Escola de Engenharia

Depto. de Eletrotécnica

Energia Solar Fotovoltáica

Prof. Stefan Krauter

Fontes de Energia Renováveis

Geração Eólica

Marcele Medeiros Monteiro de Barros

Verônica Souza de Queiroz Varella

Turbinas Eólicas

A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica de eixo (torque x rotação), a qual é convertida em potência elétrica (tensão x corrente) através de um gerador elétrico. A turbina eólica é composta pelo rotor e pela torre que o sustenta, pela transmissão/multiplicação e pelo conversor. Ela pode extrair energia cinética somente do ar que passa através da área interceptada pelas pás rotativas. Embora combinada com a eficiência do modelo, a área varrida pelo rotor circular (p r2) é um fator crucial na determinação da energia entregue pela turbina eólica. A energia cinética bruta por unidade de tempo, potência, do vento passando por uma área A perpendicular ao seu vetor velocidade instantânea V, é dada por:

P = Cp 1/2 r .A.V3

onde :

r = densidade do ar, que varia com a latitude e as condições atmosféricas; r @ 1.2kg/m3;

Cp= é o coeficiente da performance que se relaciona com a energia cinética de saída e depende do modelo e na relação entre a velocidade do rotor e a velocidade do vento.

V = velocidade do vento em m/s2.

A energia potencial da turbina eólica depende do cubo da velocidade do vento; isto significa, por exemplo, que se a velocidade do vento em um local dobrar, a energia potencial de saída de uma turbina eólica é multiplicada por 8 ( 23 ). Esta sensibilidade da energia com a velocidade do vento mostra a importância na obtenção dos dados do vento para a estimativa da energia disponível.

A velocidade média anual é um bom parâmetro para pesquisar o vento. A tabela 2.12 serve como guia. Além da velocidade média anual do vento, as médias mensais são úteis, já que elas dão uma melhor idéia das variações seasonais. Isto é importante quando a investigação do abastecimento de energia irá partir da demanda mensal.

A velocidade do vento decresce à medida que se aproxima da superfície da terra devido à fricção entre o ar e a solo. A quantidade de decréscimo depende da rugosidade do solo; por exemplo, áreas florestais têm menor escoamento de ar que áreas descampadas. Medições em estações meteorológicas são geralmente tomadas em duas alturas-padrão: 2 metros ( para propósitos agrícolas ) e 10 metros ( o padrão internacional para medições meteorológicas ).

Pode ser possível obter dados de um instituto meteorológico que tenha as velocidades médias anuais do vento de todas as estações metereológicas do país. Também pode ser válido tentar obter dados de uma universidade local. Se houver uma estação meteorológica perto do local proposto, obtenha seus dados lá. Se possível, visite a estação para checar se ela não está rodeada por construções ( por exemplo, árvores) que possam levar a medidas não confiáveis. Se houver dúvidas sobre a validade das medições, use os dados coletados nos aeroportos, que são geralmente os mais confiáveis. Mesmo quando o local está a 100 Km da estação meteorológica, os dados podem ainda ser usados em conjunto com as comparações entre a estação e o local. Entretanto, diferentes circunstâncias podem necessitar de correção de dados meteorológicos. Por exemplo, locais perto das costa geralmente têm velocidades do vento maiores do que as de uma ilha; a velocidade do vento numa ilha é cerca de 2/3 daquela próxima à costa. Também é necessário comparar o terreno. Estações meteorológicas geralmente fornecem velocidade do vento em terreno-aberto. Quaisquer obstáculos tais como moitas, árvores e construções reduzem significativamente a velocidade do vento e montanhas podem gerar ventos muito turbulentos concentrados num local. Também é importante a coleta de dados em tornados e calmarias. Turbinas eólicas são normalmente projetadas para resitir a velocidades de vento abaixo de 55 m/s; assim é necessário conhecer a velocidade de sobrevivência da turbina. Calmarias não ameaçam a turbina, mas podem levar a períodos inaceitáveis sem saída de energia.

Velocidade média anual

10 m acima do nível do solo

Possibilidades de uso para a energia eólica

Abaixo de 3 m/s

Usualmente não viável, a menos em ocasiões especiais

3-4 m/s

Pode ser uma opção para bombas eólicas, improvável para geradores eólicos

4-5 m/s

Bombas eólicas podem ser competivas com bombas à Diesel. Pode ser viável para geradores eólicos isolados

Mais que 5 m/s

Viável tanto para bombas eólicas quanto para geradores eólicos isolados.

Mais que 7 m/s

Viável para bombas eólicas, geradores eólicos isolados e conectados à rede.

1 Rotor

Componente destinado a captar energia cinética dos ventos e convertê-la em energia mecânica no eixo. Se o eixo do rotor for posicionado horizontal ou verticalmente, teremos um rotor de eixo horizontal ( rotor hélice, rotor multipás ( multivane fans ), rotor holandês, etc. ) ou um rotor de eixo vertical ( rotor Savonius, rotor Darrieus, etc ).

Rotor de eixo horizontal

Rotores de eixo horizontal são movidos por forças aerodinâmicas chamadas de forças de "lift" e forças de "drag". Um corpo que obstrui o movimento do vento, sofre a ação de forças perpendiculares ao fluxo de vento relativo ( forças de "lift" ) e de forças paralelas ao fluxo de vento relativo ( forças de "drag", de arraste). Ambas as duas são proporcionais ao quadrado da velocidade relativa do vento. Adicionalmente, forças de "lift" dependem fortemente da geometria do corpo e do ângulo entre a velocidade relativa do vento e o eixo do corpo, dito "ângulo de ataque".

Rotores que giram predominantemente sob forças de "lift" permitem liberar muito mais potência do que aqueles que giram sob o efeito de forças de "drag", para uma mesma velocidade do vento.

Os sistemas com eixo horizontal, perpendicular ao fluxo do vento, por um lado são movidos predominantemente por forças de "lift" e devem ser montados sobre uma gávea giratória provida de movimento em torno de um eixo vertical ( "yaw" ) para que o disco varrido pela pás esteja sempre em posição perpendicular ao vento.

Quanto à sua posição relativa à torre, o disco varrido pelas pás pode estar a juzante do vento ( "down wind rotors") ou a montante do vento ( "up wind rotors" ).

Uma razão para localizar o rotor a juzante da vento é que esse arranjo facilita a conicidade do rotor. O ângulo de conicidade é vantajoso por aliviar as tensões na raiz da pá, equilibrando parcialmente os momentos devidos às forças centrífugas. A desvantagem de localizar o rotor a juzante do vento é que as pás sofrem carregamento cíclico ( causadores de fadiga ) quando elas passam pela "sombra aerodinâmica",.apesar desse efeito poder ser minimizado com o emprego de torres mais esbeltas, ou afastando as pás da torre com ângulo de conicidade.

A localização do rotor a montante da torre reduz o efeito de interferência cíclica da esteira ( "sombra") da torre nas pás para um nível mínimo de altitude. Entretanto, o rotor assim deve ser sem articulações e posicionado bem adiante da torre, mesmo sob condições extremas de velocidade de vento.

Não existe nenhuma evidência nítida quanto a qual localização do rotor - quer a montante, quer a juzante - seja a mais vantajosa, pelo menos no que se concerne aos aspectos de custo total de máquinas eólicas. Na dimensão dos aerogeradores das "wind farms" americanas, a maioria dos aerogeradores lá usados são a montante do vento.

Rotor de eixo vertical

Em geral, rotores de eixo vertical têm a vantagem de não precisarem de mecanismos de acompanhamento para variações de direção do vento. Isto reduz a complexidade do projeto e os esforços devido a forças de "Coriolis". Também os rotores de eixo vertical podem ser movidos por forças de "drag" ou por forças de "lift". Os principais tipos de rotores de eixo vertical são:

- Savonius

- Darrieus

- Turbina com torre de vórtices

Os rotores do tipo Savonius são movidos predominantemente por forças de "drag" embora desenvolvam algum "lift". Têm relativamente alto torque de partida, embora em baixa velocidade. Sua eficiência é baixa. Seu rendimento mecânico máximo pode atingir 31%.

Os rotores tipo Darrieus desenvolvidos em 1927 pelo francês G.J.M Darrieus são os mais fortes concorrentes aos cataventos convencionais de hélices. São movidos por forças de "lift". Constituem-se de lâminas ( duas ou três ) curvas de perfil aerodinâmico atadas pelas duas pontas ao eixo vertical. Em rotação, suas lâminas são curvadas por força centrífuga até um diâmetro aproximadamente igual a distância entre as pontas, assumindo a forma de uma catenária. Podem atingir alta velocidade, mas o torque de partida é aproximadamente nulo. Várias configurações podem ser concebidas. Estes rotores podem ser combinados a outros rotores para aumentar o torque de partida. Sua eficiência é alta, quase comparável aos tipos convencionais de cataventos.

As turbinas com torre de vórtice são unidades mais compactas do que outros cataventos, fixada uma potência de saída. Estão em estágio de desenvolvimento.

Construtivamente, as pás podem ter as mais variadas formas e empregar os mais variados materiais. Em particular, pás rígidas de madeira, alumínio, aço, fibra de vidro, fibra de carbono e/ou Kevlar são os mais promissores.

Fibras de vidro: Materiais compostos reforçados com fibra de vidro oferecem boa resistência específica e resistência à fadiga, bem como os custos competitivos para as pás. É o material utilizado em quase todas as pás dos aerogeradores dos parques eólicos da Califórnia ( EUA ), e já foi utilizado em rotores de até 78m de diâmetro. As pás em materiais compostos possibilitam uma geometria aerodinâmica lisa, contínua e precisa. As fibras são colocadas estruturalmente nas principais direções de propagação das tensões quando em operação.

Aço: Os aços estruturais são disponíveis a custo relativamente baixo no mercado interno de alguns países, e há bastante experiência na sua utilização em estruturas aeronáuticas de todos os tamanhos. No entanto, uma desvantagem do aço é que as pás nesse material tendem a ser pesadas, o que acarreta aumentos de peso e custo de toda a estrutura suporte. Pás de aço necessitam de proteção contra a corrosão, para a qual existem diversas alternativas possíveis.

Madeira: Essa fibra natural, que também constitui um material composto, evoluiu ao longo de milhões de anos para suportar cargas de fadiga induzidas pelo vento, que tem muito em comum com aquelas a que são submetidos os rotores de aerogeradores. A madeira é amplamente utilizada no mundo para pás de rotores pequenos ( até 10 m de diâmetro ). O baixo peso da madeira é uma vantagem, mas deve-se cuidar para evitar variações do teor de umidade interna, o que pode causar degradação das propriedades mecânicas e variações dimensionais, que enfraquecem a estrutura das pás e podem causar rompimentos na estrutura.

Alumínio: a maior parte dos aerogeradores do tipo Darrieus usam pás feitas de ligas de alumínio, extrudadas na forma de perfil aerodinâmico. Entretanto, ligas de alumínio não têm limite inferior de tensão de fadiga, à medida que os ciclos de carregamento são aumentados, e este comportamento sempre tem levantado dúvidas quanto à possibilidade de se atingir a longa vida de 20 anos ou mais para um rotor de alumínio.

Fibra de carbono e/ou Kevlar: são materiais compostos mais avançados, que podem ser utilizados em áreas críticas ( longarina da pá, por exemplo ), para melhorar a rigidez da estrutura. Tem sido utilizados experimentalmente, mas tais materiais tem preços altos demais para serem utilizados nos aerogeradores economicamente mais competitivos.

A maioria dos rotores modernos tem duas ou três pás. Os projetistas americanos tem escolhido geralmente duas pás com base no argumento de que o custo de duas pás é menor que o de três. Outros, especialmente os dinamarqueses, argumentam que o custo extra da terceira pá é compensado pelo comportamento dinâmico mais suave do rotor de três pás, e que o custo total do aerogerador é virtualmente idêntico quer se usem duas ou três pás. Um rotor de três pás fornece oscilações menores de torque no eixo, o que simplifica a transmissão mecânica.

Se um rotor de duas pás é escolhido - pelo menos para aerogeradores grandes - é usual se ter o rotor articulado, isto é, permitindo uns poucos graus de movimento perpendicular ao eixo de rotação. Com um cubo articulado, cada pá, ao passar pelo topo do círculo de rotação - onde a velocidade do vento é maior devido ao gradiente vertical - move-se um pouco para trás; ao mesmo tempo a outra pá, no curso inferior do círculo de rotação - onde o vento é menor - move-se para frente. Este movimento de articulação alivia significativamente as tensões na raiz das pás, e o consequente custo/benefício mais do que compensa pelo custo extra da articulação no cubo. Como o peso próprio das pás introduz cargas cíclicas na raiz (no plano de rotação ), e também penaliza a estrutura da torre, as pás devem obedecer ao critério de peso mínimo, resistência à fadiga e rigidez estrutural.

Rotores modernos com mais de três pás são apenas usados quando se necessita de um grande torque de partida, o que é basicamente o caso de bombeamento mecânico de água. Aerodinamicamente, no entanto, grande número de pás e alto torque de partida implicam em menor eficiência. O rotor deve ser fabricado com grande esbeltez, precisão nos perfis aerodinâmicos, bom acabamento superficial, que são requisitos para maximizar a eficiência aerodinâmica.

Sistemas de controle para limitação de potência

A potência contida no vento é proporcional ao cubo da velocidade do vento, mas velocidades muito altas de vento ocorrem com uma frequência relativa muito pequena. Estes ventos pouco frequentes contribuem muito pouco para a energia gerada, e não seria economicamente esperto projetar aerogeradores para operar eficientemente sob tais condições; os elevados carregamentos nas pás e as grandes potências de pico acrescentariam custos extras substanciais ao custo do aerogerador, e dariam um incremento de energia gerada muito pequeno. Estes custos extras podem ser evitados se for limitada a potência do aerogerador para ventos fortes.

Isto é mais frequentemente conseguido arranjando-se para que toda extensão da pá (ou apenas parte dela ) seja rodada em torno de seu eixo longitudinal, de forma a aumentar o ângulo de passo da hélice, o que reduz as cargas e a eficiência aerodinâmica durante o período de ventos fortes. A variação de passo limita a rotação e as cargas aerodinâmicas. O enfoque alternativo é usar pás de passo fixo, que tornam o cubo mais barato e simples de fabricar, em conjunto com gerador de rotação constante, e deixar que a pá estole e limite a potência, quando sob ventos fortes. A rotação constante pode ser facilmente obtida para geradores conectados à rede, pelo emprego de gerador síncrono ou de indução. Então à medida que a velocidade do vento aumenta, o ângulo de ataque em que o escoamento encontra a pá aumenta, até que o escoamento sobre o rotor descola e a potência gerada se reduz.

2- Transmissão/ Multiplicação

A velocidade angular de rotores varia habitualmente na faixa de 15 a 220 rpm devido a restrições de velocidade na ponta da pá (tangenciais), que operam na ordem de 50 a 110m/s, quase independentemente do tamanho do diâmetro. Como geradores trabalham, sobretudo geradores síncronos, a rotações bastante mais altas ( comum entre 1200 e 1800 rpm), torna-se necessária a instalação de sistemas de multiplicação entre o eixo do rotor e o eixo do gerador. Isto significa geralmente um multiplicador convencial, com dois ou três estágios de engrenagens, apesar de transmissões metálicas também terem sidos experimentadas. Nos aerogeradores conectados às redes de distribuição elétrica, a rotação no gerador é de, tipicamente, 1500 rpm ( para 50 Hz) e de 1800 rpm ( para 60Hz ). Para aplicações onde a rede é de alta potência, o simples e confiável gerador de indução ( assíncrono ) pode ser usado; a rotação é então mantida dentro de uma certa percentagem da rotação síncrona ( um pequeno ângulo de "escorregamento" é essencial para a operação deste tipo de gerador). Devido a esta pequena ( mas finita) margem de velocidades é permitida alguma absorção de energia das flutuações rápidas de vento na forma de energia cinética do rotor pela sua inércia. Desta forma, as flutuações de cargas nas engrenagens da caixa de multiplicação são levemente suavizadas.

Para alguns rotores de tamanhos pequenos, é possível a conexão direta, pois por exemplo, rotores de 1m de diâmetro podem atingir rotações de até 2000 rpm. Também, para potências na ordem de poucos quilowatts, geradores especiais podem ser construídos, com baixa rotação, para conexão direta aos rotores.

Para potências acima de 1 a 2 kW, e rotores com mais de 3m de diâmetro, a regra geral é a utilização de alguma forma de multiplicador de velocidades entre o rotor e o gerador. Correias, correntes e transmissões hidráulicas têm sido utilizadas, mas a forma mais amplamente utilizada e provavelmente com maior sucesso é a transmissão por engrenagens, nas suas várias formas, desde engrenagens de dentes paralelos a dentes helicoidais, sistemas planetários ou não. A multiplicação por engrenagens é a de maior eficiência. Multiplicação por correias ou correntes tem a possibilidade de baixos custos, porém são viáveis apenas para pequenas potências

3- Geradores

A transformação de energia mecânica de rotação em energia elétrica através de equipamentos de conversão eletromecânica é um problema tecnologicamente dominado. Grupos geradores são correntemente industrializados e comercialmente disponíveis. A problemática na integração dos grupos geradores existentes a sistemas de conversão eólica envolve:

- variações na velocidade do vento ( extensa faixa de rotações por minuto para a geração );

- variações do torque de entrada ( posto que variações na velocidade do vento induzem variações de potência disponível no eixo conjunto gerador);

- exigência de frequência e voltagem constante na energia final produzida;

- facilidade de instalação, operação e manutenção de tais engenhos devido ao isolamento geográfico de muitos desses sistemas, sobretudo em caso de pequena escala de produção. ( isto é, alta confiabilidade dos equipamentos);

- baixos custos.

Para aplicações isoladas, onde geralmente o objetivo é carregar baterias, existem duas opções: gerador de corrente contínua ou gerador síncrono com retificador. Em geradores DC não há necessidade de controle da velocidade do rotor e a tensão é independente de velocidade constante, uma vez que se exerce um controle sobre o campo, entretanto geralmente são mais pesados, mais caros, a fabricação é principalmente para baixas potências, necessita de regulador de tensão acoplado ao campo e de manutenção periódica. No Brasil, para potências maiores que 1 kW, são usados os geradores síncronos com retificador. Geradores e alternadores automotivos são produzidos em grande quantidade, têm baixo custo ( por Watt ), e têm assistência técnica em praticamente todo o território nacional. No entanto, existem apenas para potências abaixo de 1 kW ( os mais comuns são de 200-500 Watts ), têm baixa eficiência e alta rotação, o que faz de seu uso um compromisso técnico-econômico difícil.

Já para os aerogeradores conectados à rede, as principais opções que existem são: geradores síncronos, geradores assíncronos ( de indução ) e geradores de comutador de corrente alternada.

O tipo de gerador decididamente influencia o comportamento em operação do aerogerador e suas interações com a rede. As tensões mecânicas e as flutuações rápidas de potência gerada diminuem quanto maior for a capacidade e a amplitude das variações de rotação permissíveis no gerador.

Geradores Síncronos

Grande parte dos sistemas de conversão de energia eólica construídos até hoje, de média e grande escala de produção, usam geradores síncronos para a conversão eletromecânica. O estado de desnvolvimento tecnológico de tais equipamentos os recomenda fortemente. Dois tipos de excitação de campo são permitidos: (1) excitatriz independente, por baterias, com carregamento e (2) excitatriz acoplada a rotação do eixo com campo de ímã permanente. Suas vantagens são:

- Não há virtualmente limitação de potência para sua fabricação;

- Podem ser ligados diretamente à rede;

- Alta eficiência (h g = 0.98 );

- Permitem melhor controle do fator de potência da carga.

E as desvantagens:

- Se ligado à rede, é necessário manter velocidade de rotação constante no sistema, posto que a constância de sua frequência depende intrinsecamente da constância da velocidade de rotação. Caso contrário poderá apresentar problemas de instabilidade.

- Necessita regulador de voltagem acoplado ao campo.

Geradores Assíncronos

Esses geradores não possuem campo de excitação. Comparativamente com geradores síncronos, entretanto, necessitam de maior torque de partida para "cut-in" (acoplamento). Para o gerador de indução, variações limitadas de rotação são possíveis, dentro da margem de "escorregamento" do gerador. Isto permite maior elasticidade em rotação do que o gerador síncrono, o que reduz tensões mecânicas e flutuações elevadas de potência gerada quando da ocorrência de rajadas de curta duração, permitindo alguma absorção da energia da rajada de vento na forma de energia cinética pela inércia do rotor, e são eliminados os problemas de instabilidades em transientes. Além disso, geradores de indução são mais robustos, requerem mínima manutenção e têm uma longa vida em operação.

O gerador de indução também possibilita conexão direta `a rede sem a necessidade de sincronização ou de regulação de voltagem. Entretanto, alguns problemas podem ocorrer com a magnetização, a corrente de partida e com o controle de potência reativa, especialmente nas seções de alta impedância da rede elétrica onde tiver instalado. No caso dos parque eólicos da Califórnia, praticamente todos os aerogeradores em uso têm geradores de indução.

Geradores de Comutador de Corrente Alternada

São geradores adaptados especialmente para produção de frequência variável. Têm excitação independente por gerador de baixa potência, pulsando com a frequência desejada. Sua concepção é similar às excitatrizes de grandes turbo-geradores ( 1000 MW ) do tipo conhecido sob o nome de "brushless excitation system". A limitação tecnológica de potência situa-se na faixa de 5 MW.

Vantagens:

- A frequência de saída é sempre igual à frequência de excitação: independe da velocidade de rotação do eixo do gerador.;

- Melhor controle do fator de potência da carga;

- Podem ser usados eventualmente como gerador síncrono.

Desvantagens:

- Custo da ordem de 20% acima de geradores de corrente contínua;

- Exigem manutenção periódica: troca de escovas, etc.

A tecnologia eletrônica moderna de estado sólido para grandes potências, tornou comerciais retificadores e inversores de estado sólido capazes de operar em potências comuns de sistemas de conversão. Conjuntos de gerador síncrono - transformador - retificador - inversor de estado sólido e gerador são sistemas disponíveis e utilizáveis comercialmente, para o caso de sistemas de conversão de energia eólica de velocidade variável e frequência constante. Estão em investigação: Conversores cíclicos, Alternadores de frequência, Geradores de campo modulado, entre outros exemplos. Geradores de corrente contínua, não considerados anteriormente em faixas superiores de potência devido ao alto custo de alternadores associados para a geração de corrente alternada, começam a ser reconsiderados em média ou larga escala de produção pela facilidade de armazenamento elétrico em conjuntos de baterias e o desenvolvimento de Inversores.

4- Torre

As torres que elevam os rotores a altura desejada, estão sujeitas à inúmeros esforços. Primeiramente forças horizontais devem ser levadas em conta: resistência do rotor ( "drag" ) e da própria torre à força do vento. Em seguida, forças torsionais, impostas pelo mecanismo de controle de rotação da gávea giratória e esforços verticais (peso do próprio equipamento), não devem ser desprezados.

Quanto ao material, as torres podem ser de aço (em treliças ou tubulares), ou tubulares de concreto. Para aerogeradores menores, é possível a utilização de torres de madeira sobre um poste de eucalipto com estais de aço.

A torre suporta a massa da nacele e das pás; as pás, em rotação, excitam cargas cíclicas no conjunto, com a frequência da rotação e seus múltiplos, e assim uma questão fundamental no projeto da torre é a sua frequência natural, que deve ser desacoplada das excitações para evitar o fenômeno de ressonância, o qual aumenta a amplitude das vibrações e tensões resultantes e reduz a vida em fadiga dos componentes, entre outros efeitos desagradáveis. Logo após 1973, a primeira geração de aerogeradores ditos modernos foi projetada com torres rígidas, com frequências naturais bem acima das forças de rotação do rotor. Entretanto, esse enfoque conduziu a torres desnecessariamente pesadas e caras.

À medida que a compreensão dos problemas dinâmicos de aerogeradores foi aumentando, durante a última década, tornou-se possível aerogeradores mais leves, que são consequentemente menos rígidos, mas também significativamente mais baratos que seus antecessores.

Desde que tenha as suas frequências naturais desacopladas das da excitação do rotor, as torres podem ser estaiadas ou não. De modo geral, as frequências naturais de uma torre estaiada podem ser melhor reguladas variando-se a tensão de estaiamento. Interessante notar que um estaiamento por barras de aço é preferível ao uso de cabos, pois estes são mais elásticos e necessitam de pré-tensões muito maiores do que as que seriam necessárias em barras para atingir a mesma frequência natural, numa mesma configuração.

Um aerogerador moderno constitui uma estrutura esbelta, com a massa das pás em rotação sobre uma torre, excitando cargas cíclicas sobre todo o sistema. Um problema básico do projeto é determinar todos os modos e frequências naturais de vibração dos componentes, em especial pás e torre, para evitar ressonância com as frequências de excitação do rotor em operação. A ressonância causa aumento das amplitudes de carregamento cíclico no sistema, comprometendo a resistência à fadiga e reduzindo a vida útil prevista para o aerogerador, que é de aproximadamente 20 anos.

Referência Bibliográfica sobre Energia Eólica

[1] - CHESF - Fontes Energéticas Brasileiras - Energia Eólica Vol III - 1987

[2] - Relatório elaborado para a ELETROBRÁS por Scientia - Sistemas de Conversão de Energia Eólica - 1977.

[3] - HIRATA, Miguel - Energia Eólica, Uma Introdução ; Laboratório de Mecânica dos Fluidos - COPPE ,UFRJ -1985.

[4] - HULSCHER, Wim and FRANKEL, Peter - The Power Guide - University of Twente, 2a ed. - 1994

[5] - HUNTER & ELLIOT - Wind- Diesel Systems - Cambridge University Press, 1994.

 

http://www.solar.coppe.ufrj.br/eolica/eol_txt.htm

A better way to pack natural gas into fuel tanks

 

 

Tue, 10/27/2015 - 7:25am

Robert Sanders, UC Berkeley

Flexible MOFs undergo a dramatic structural change when they adsorb methane, rapidly going from a nonporous to a highly porous material. This animated gif shows one pore of the material. Image: Jarad Mason/UC Berkeley

Flexible MOFs undergo a dramatic structural change when they adsorb methane, rapidly going from a nonporous to a highly porous material. This animated gif shows one pore of the material. Image: Jarad Mason/UC BerkeleyA new and innovative way to store methane could speed the development of natural gas-powered cars that don’t require the high pressures or cold temperatures of today’s compressed or liquefied natural gas vehicles.

Natural gas is cleaner-burning than gasoline, and today there are more than 150,000 compressed natural gas (CNG) vehicles on the road in the U.S., most of them trucks and buses. But until manufacturers can find a way to pack more methane into a tank at lower pressures and temperatures, allowing for a greater driving range and less hassle at the pump, passenger cars are unlikely to adopt natural gas as a fuel.

UC Berkeley chemists have now developed a porous and flexible material—a so-called metal-organic framework (MOF)—for storing methane that addresses these problems. The flexible MOF collapses when the methane is extracted to run the engine, but expands when the methane is pumped in at only moderate pressure, within the range produced by a home compressor.

You could potentially fill up at home,” said Jeffrey Long, a UC Berkeley professor of chemistry who led the project.

The flexible MOF can be loaded with methane, the main ingredient of natural gas, at 35 to 65 times atmospheric pressure (500 to 900 psi), whereas compressed natural gas (CNG) vehicles compress natural gas into an empty tank under 250 atmospheres (3,600 psi).

Liquefied natural gas (LNG) vehicles operate at lower pressures but require significant insulation in the tank system to maintain the natural gas at minus-162 degrees Celsius (minus-260 degrees Fahrenheit) so that it remains liquid.

Next-gen NG vehicles
Long said that next-generation natural gas vehicles will require a material that binds the methane and packs it more densely into the fuel tank, providing a larger driving range. One of the major problems has been finding a material that absorbs the methane at a relatively low pressure, such as 35 atmospheres, but gives it all up at a pressure where the engine can operate, between 5 and 6 atmospheres. MOFs, which have a lot of internal surface area to adsorb gases—that is, for gas molecules to stick to the internal surfaces of the pores—and store them at high density, are one of the most promising materials for adsorbed natural gas (ANG) storage.

This is a big advance both in terms of capacity and thermal management,” Long said. “With these new flexible MOFs, you can get to capacities beyond what was thought possible with rigid MOFs.”

Among the other advantages of flexible MOFs, Long says, is that they do not heat up as much as other methane absorbers, so there is less cooling of the fuel required.

“If you fill a tank that has adsorbent, such as activated charcoal, when the methane binds it releases heat,” he said. “With our material, some of that heat goes into changing the structure of the material, so you have less heat to dissipate, less heat to manage. You don’t have to have as much cooling technology associated with filling your tank.”

The flexible MOF material could perhaps even be placed inside a balloon-like bag that stretches to accommodate the expanding MOF as methane is pumped in, so that some of the heat given off goes into stretching the bag.

Long and his colleagues at the National Institute of Standards and Technology and in Europe will publish their findings online in Nature.

Improving on-board natural-gas storage
Natural gas from oil wells is one of the cheapest and cleanest fossil fuels today, used widely to heat homes as well as in manufacturing and to produce electricity. It has yet to be widely adopted in the transportation sector, however, because of the expensive and large on-board compressed fuel tanks. In addition, gasoline packs over three times the energy density per volume as natural gas, even when compressed to 3,600 psi, which results in natural gas vehicles with a shorter driving range per fill-up.

In order to advance on-board natural gas storage, Ford Motor Company teamed up with UC Berkeley on this project, with funding from the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Dept. of Energy. Ford is a leader in CNG/propane-prepped vehicles with more than 57,000 sold in the U.S. since 2009, more than all other major U.S. automakers combined.

According to Mike Veenstra, of Ford’s research and advanced engineering group in Dearborn, Michigan, Ford recognized that ANG has the potential to lower the cost of on-board tanks, station compressors and fuel along with serving to increase natural gas-powered vehicle driving range within the limited cargo space.

“Natural gas storage in porous materials provides the key advantage of being able to store significant amounts of natural gas at low pressures than compressed gas at the same conditions,” said Veenstra, the principal investigator of this ARPA-E project. “The advantage of low pressure is the benefit it provides both on-board the vehicle and off-board at the station. In addition, the low-pressure application facilitates novel concepts such as tanks with reduced wall thicknesses along with conformable concepts which aid in decreasing the need to achieve the equivalent volumetric capacity of compressed CNG at high pressure.”

Long has been exploring MOFs as gas adsorbers for a decade, hoping to use them to capture carbon dioxide emitted from power plants or store hydrogen in hydrogen-fueled vehicles, or to catalyze gas reactions for industry. Last year, however, a study by UC Berkeley’s Berend Smit found that rigid MOFs have a limited capacity to store methane. Long and graduate student and first author Jarad Mason instead turned to flexible MOFs, noting that they behave better when methane is pumped in and out.

The flexible MOFs they tested are based on cobalt and iron atoms dispersed throughout the structure, with links of benzenedipyrazolate (bdp). Both cobalt (bdp) and iron (bdp) are highly porous when expanded, but shrink to essentially no pores when collapsed.

Their first experiments on these compounds already surpass the theoretical limits for rigid MOFs, Long said. This is a fundamental discovery that now needs a lot of engineering to find out how best to take advantage of these new adsorbent properties.”

He and his colleagues are also now developing flexible MOFs to store hydrogen.

Source: Univ. of California, Berkeley

http://www.rdmag.com/news/2015/10/better-way-pack-natural-gas-fuel-tanks

World's fastest nanoscale photonics switch

 

 

"Device" is a disc 250 nm in diameter that is capable of switching optical pulses at femtosecond rates (femtosecond is a one millionth of one billionth of a second).

Credit: Maxim Scherbakov et al

International team of researchers from Lomonosov Moscow State University and the Australian National University in Canberra created an ultrafast all-optical switch on silicon nanostructures. This device may become a platform for future computers and permit to transfer data at an ultrahigh speed. The article with the description of the device was published in Nano Letters journal and highlighted in Nature Materials.

This work belongs to the field of photonics -- an optics discipline which appeared in the 1960-s, simultaneously with the invention of lasers. Photonics has the same goals as electronics does, but uses photons--the quanta of light--instead of electrons. The biggest advantage of using photons is the absence of interactions between them. As a consequence, photons address the data transmission problem better than electrons. This property can primarily be used for in computing where IPS (instructions per second) is the main attribute to be maximized. The typical scale of eletronic transistors--the basis of contemporary electronic devices--is less than 100 nanometers, wheres the typical scale of photonic transistors stays on the scale of several micrometers. Nanostructures that are able to compete with the electronic structures--for example, plasmonic nanoparticles--are characterized by low efficiency and significant losses. Therefore, coming up with a compact photonic switch was a very challenging task.

Three years ago several groups of researchers simultaneously discovered an important effect: they found out that silicon nanoparticles are exhibit strong resonances in the visible spectrum -- the so-called magnetic dipole resonances. This type of resonance is characterized by strong localization of light waves on subwavelength scales, inside the nanoparticles. This effect turned out to be interesting to researches, but, according to Maxim Shcherbakov, the first author of the article published in Nano Letters, nobody thought that this discovery could create a basis for development of a compact and very rapid photonic switch.

Nanoparticles were fabricated in the Australian National University by e-beam lithography followed by plasma-phase etching. It was done by Alexander Shorokhov, who served an internship in the University as a part of Presidential scholarship for studying abroad. The samples were brought to Moscow, and all the experimental work was carried out at the Faculty of Physics of Lomonosov Moscow State University, in the Laboratory of Nanophotonics and Metamaterials.

"In our experimental research me and my colleague Polina Vabishchevich from the Faculty used a set of nonlinear optics methods that address femtosecond light-matter, -- explains Maxim Shcherbakov. -- We used our femtosecond laser complex acquired as part of the MSU development program."

Eventually, researches developed a "device": a disc 250 nm in diameter that is capable of switching optical pulses at femtosecond rates (femtosecond is a one millionth of one billionth of a second). Switching speeds that fast will allow to create data transmission and processing devices that will work at tens and hundreds terabits per second. This can make possible downloading thousands of HD-movies in less than a second.

The operation of the all-optical switch created by MSU researchers is based on the interaction between two femtosecond pulses. The interaction becomes possible due to the magnetic resonance of the silicon nanostructures. If the pulses arrive at the nanostructure simultaneously, one of them interacts with the other and dampers it due to the effect of two-photon absorption. If there is a 100-fs delay between the two pulses, the interaction does not occur, and the second pulse goes through the nanostructure without changing.

"We were able to develop a structure with the undesirable free-carrier effects are suppressed, -- says Maxim Shcherbakov. -- Free carriers (electrons and electron holes) place serious restrictions on the speed of signal conversion in the traditional integrated photonics. Our work represents an important step towards novel and efficient active photonic devices-- transistors, logic units, and others. Features of the technology implemented in our work will allow its use in silicon photonics. In the nearest future, we are going to test such nanoparticles in integrated circuits."

http://www.sciencedaily.com/releases/2015/10/151027143027.htm