sábado, 14 de junho de 2014

High electron mobility gases generated in semiconductor nanowires for first time

 


Miquel Royo.

Nanotechnology, optics and photovoltaic energy are among the fields that can benefit from advances in knowledge on semiconductor nanowire systems. Researchers at the Universitat Jaume I in Castelló (UJI), the Consiglio Nazionale delle Ricerche in Italy and the Walter Schottky Institut in Germany have succeeded to prove, for the first time, the accumulation of high electron mobility gases in multilayer nanowires from a technique called "remote doping."

This technique, which is currently being used as standard in industry, has allowed for more than 35 years to obtain high electron mobility devices typically based on multilayer planar structures. Research published in the journal Nano Letters collects for the first time the obtaining of these high mobility electrons in an entirely new morphology, such as gallium arsenide nanowires, a hexagonal tube at nanoscale growing on a silicon surface and radially coated with other semiconductor materials. This unique multilayer structure can create spaces in nanowires where electrons move free of impurities at high speed. In this sense, Miquel Royo, researcher at the Quantum Chemistry Group at the UJI, stresses that they have achieved "the highest electron mobility in semiconductor nanowires that has been published to date."

The study showed that the experimental measurements performed by German researchers on doped nanowires are consistent with computer simulations carried out by the researcher at the UJI, in which the existence of a high electron mobility gas in the nanowire is assumed. Theoretical simulations of the system have also led to the conclusion that "the resulting electron gas has a mixed dimensionality. The electrons tend to be located at the interfaces between the different layers of the nanowire, which gives them a two-dimensional character. However, due to the peculiar hexagonal shape of the nanowires and the repulsion between the electrons, it has been observed that these are accumulated predominantly at the vertex of the heterostructure, thus forming unidimensional channels.

Without needing doping elements

The journal Nano Letters recently published a new study by the same researcher at the Quantum Chemistry Group at the UJI in collaboration with researchers from the Laboratoire National des Champs Mannétiques Intenses in Toulouse (France). In this study, they have managed to generate again electronic gases in multilayer nanowires, but this time without requiring the introduction of doping elements intentionally.

The study shows that a thin layer of gallium arsenide grown on the nanowire between two aluminum arsenide layers acts as a trap for the carbon atoms that are present in all growth chamber. "The carbon accumulated in the nanowire acts, in turn, as a dopant that has not been intentionally added, and it creates the appearance, in this case, of an electron hole gas," explains Royo, noting that "in this way, we get an alternative technique for obtaining electronic gases in this complex technical systems." The verification of the presence of electron hole gas in the nanowires was carried out by confronting experimental measurements of photoluminescence with computer simulations performed by the same researcher at the UJI.

The results presented in both publications represent important technological advances, especially in the field of nanoelectronics, "that is particularly useful to have nanodevices in which the mobility of electrons is so high, especially for high frequency applications such as mobile phones that require that you have a low power dissipation," says the researcher at the Universitat Jaume I. He adds that "once we are able to reproducibly grow this new type of semiconductor nanostructures, they will represent an ideal scenario to study the fundamental properties of high mobility electronic gases in new mixed dimensionality morphologies."

Who's using your data? New technology to track how your private data is used online

 

June 13, 2014

Massachusetts Institute of Technology

By now, most people feel comfortable conducting financial transactions on the Web. The cryptographic schemes that protect online banking and credit card purchases have proven their reliability over decades. As more of our data moves online, a more pressing concern may be its inadvertent misuse by people authorized to access it. Every month seems to bring another story of private information accidentally leaked by governmental agencies or vendors of digital products or services.


By now, most people feel comfortable conducting financial transactions on the Web. The cryptographic schemes that protect online banking and credit card purchases have proven their reliability over decades.

As more of our data moves online, a more pressing concern may be its inadvertent misuse by people authorized to access it. Every month seems to bring another story of private information accidentally leaked by governmental agencies or vendors of digital products or services.

At the same time, tighter restrictions on access could undermine the whole point of sharing data. Coordination across agencies and providers could be the key to quality medical care; you may want your family to be able to share the pictures you post on a social-networking site.

Researchers in the Decentralized Information Group (DIG) at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) believe the solution may be transparency rather than obscurity. To that end, they're developing a protocol they call "HTTP with Accountability," or HTTPA, which will automatically monitor the transmission of private data and allow the data owner to examine how it's being used.

At the IEEE's Conference on Privacy, Security and Trust in July, Oshani Seneviratne, an MIT graduate student in electrical engineering and computer science, and Lalana Kagal, a principal research scientist at CSAIL, will present a paper that gives an overview of HTTPA and presents a sample application, involving a health-care records system that Seneviratne implemented on the experimental network PlanetLab.

DIG is directed by Tim Berners-Lee, the inventor of the Web and the 3Com Founders Professor of Engineering at MIT, and it shares office space with the World Wide Web Consortium (W3C), the organization, also led by Berners-Lee, that oversees the development of Web protocols like HTTP, XML, and CSS. DIG's role is to develop new technologies that exploit those protocols.

With HTTPA, each item of private data would be assigned its own uniform resource identifier (URI), a key component of the Semantic Web, a new set of technologies, championed by W3C, that would convert the Web from, essentially, a collection of searchable text files into a giant database.

Remote access to a Web server would be controlled much the way it is now, through passwords and encryption. But every time the server transmitted a piece of sensitive data, it would also send a description of the restrictions on the data's use. And it would log the transaction, using only the URI, somewhere in a network of encrypted, special-purpose servers.

HTTPA would be voluntary: It would be up to software developers to adhere to its specifications when designing their systems. But HTTPA compliance could become a selling point for companies offering services that handle private data.

"It's not that difficult to transform an existing website into an HTTPA-aware website," Seneviratne says. "On every HTTP request, the server should say, 'OK, here are the usage restrictions for this resource,' and log the transaction in the network of special-purpose servers."

An HTTPA-compliant program also incurs certain responsibilities if it reuses data supplied by another HTTPA-compliant source. Suppose, for instance, that a consulting specialist in a network of physicians wishes to access data created by a patient's primary-care physician, and suppose that she wishes to augment the data with her own notes. Her system would then create its own record, with its own URI. But using standard Semantic Web techniques, it would mark that record as "derived" from the PCP's record and label it with the same usage restrictions.

The network of servers is where the heavy lifting happens. When the data owner requests an audit, the servers work through the chain of derivations, identifying all the people who have accessed the data, and what they've done with it.

Seneviratne uses a technology known as distributed hash tables -- the technology at the heart of peer-to-peer networks like BitTorrent -- to distribute the transaction logs among the servers. Redundant storage of the same data on multiple servers serves two purposes: First, it ensures that if some servers go down, data will remain accessible. And second, it provides a way to determine whether anyone has tried to tamper with the transaction logs for a particular data item -- such as to delete the record of an illicit use. A server whose logs differ from those of its peers would be easy to ferret out.

To test the system, Seneviratne built a rudimentary health-care records system from scratch and filled it with data supplied by 25 volunteers. She then simulated a set of transactions -- pharmacy visits, referrals to specialists, use of anonymized data for research purposes, and the like -- that the volunteers reported as having occurred over the course of a year.

Seneviratne used 300 servers on PlanetLab to store the transaction logs; in experiments, the system efficiently tracked down data stored across the network and handled the chains of inference necessary to audit the propagation of data across multiple providers. In practice, audit servers could be maintained by a grassroots network, much like the servers that host BitTorrent files or log Bitcoin transactions.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology.

Involving a genetic health care professional may improve quality, reduce unnecessary testing

 


A new Moffitt Cancer Center study published Thursday in Genetics in Medicine shows that counseling from a genetic health care provider before genetic testing educates patients and may help reduce unnecessary procedures.

Up to 10 percent of cancers are inherited, meaning a person was born with an abnormal gene that increases their risk for cancer. "Pre-test genetic counseling in which a health care provider takes a thorough family history and discusses the potential risks and benefits of genetic testing is standard of care as recommended by the American Society of Clinical Oncology and National Society of Genetic Counselors," said Tuya Pal, M.D., a board-certified geneticist at Moffitt and senior author of the paper.

In the Moffitt study, researchers surveyed 473 patients who had genetic testing for BRCA1 and BRCA2 gene mutations, which are associated with an increased risk of breast and ovarian cancers. Among study participants who saw a board-certified geneticist or genetic counselor, almost all recalled having a pre-test discussion, compared to only 59 percent of those who did not. These findings suggest large differences in quality of care across providers who order testing.

The researchers also suggest there may be cost-of-care implications when genetic health care providers are involved. "Our results suggest that genetic health care providers are less likely to order more expensive comprehensive genetic testing, when less expensive testing may be appropriate," said Deborah Cragun, Ph.D., lead study author and post-doctoral fellow at Moffitt. "Our study found that in cases where less expensive testing may be appropriate, genetic health care providers ordered comprehensive testing for 9.5 percent of participants, compared to 19.4 percent when tests were ordered by other health care providers. At the time of data collection, comprehensive genetic testing cost approximately $4,000, compared to $400 for the less expensive testing."

The findings are important, noted researchers, because costs and quality of care are often the focus of policy-level decisions in health care.

Body Language

 

By a man’s fingernails, by his coat-sleeve, by his boots, by his trouser-knees, by the calluses of his forefinger and thumb, by his expression, by his shirt-cuffs, by his movements – by each of these things a man’s calling is plainly revealed. That all united should fail to enlighten the competent enquirer in any case is almost inconceivable / Sherlock Holmes, 1892.

The aim of this exhibition is — to become aware of ourselves and of the people around us. Not claiming any in-depth analysis, and hoping that you will take a moment to think about it. It seemed amazing to us that we can try to better understand ourselves or others.

 

 

 

 

 

 

Source: wondersbook.wordpress.com

 

 

 

Source: wondersbook.wordpress.com

 

Source: Internet

Biodegradable synthetic resin replaces vital body parts

 

Biodegradable synthetic resin replaces vital body parts

Biodegradable carrier structure made using stereolithography. The newly-developed polylactide-based resin makes it possible to replicate three-dimensional digital structures very accurately. The white bar is 500 micrometre in length.  …more

Researchers at the University of Twente (UT) have developed a new type of resin that can be broken down by the body. This new resin makes it possible to replicate important body parts exactly and make them fit precisely.

The resin can be given different properties depending on where in the body it is to be used. Cells can be sown and cultured on these models, so that the tissues grown are, in fact, produced by the body itself. The new resin has been developed by Ferry Melchels and Prof. Dirk Grijpma of the UT’s Polymer Chemistry and Biomaterials research group. An article on this breakthrough will be appearing in the authoritative specialist journal, Biomaterials.

Stereolithography is a technology with which three-dimensional objects can be made from a digital design. It is also possible to scan an object using a CT scanner (or micro-CT scanner) to obtain a digital image. The object in question can subsequently be copied extremely accurately with a stereolithograph. A stereolithograph is therefore a 3D replicating machine with a very high resolution. The way it works is based on the local hardening of a liquid resin with computer-driven light. The resins available for stereolithography so far harden into chemical networks that cannot be broken down.

Resin

For the first time, researchers from the UT have developed a biodegradable resin that can be used for this replicating machine. They have made the resin in such a way that it can be broken down by the body. Making objects from this resin may have great advantages for a many medical applications. If, for example, a child has a heart valve disorder, a 3D digital image of the heart valve can be created using a CT scanner. The model in the stereolithograph can be copied exactly with the new resin. If the structure is made porous, the child’s own cells can be placed on it. This porosity also gives nutrients access to the cells. Ultimately, after the carrier structure has broken down, only the natural tissue remains. Another possibility is to use the resin to create structures for correcting skull defects. You can fabricate a shape very accurately using a stereolithograph. By growing the patient’s own cells on it, his or her own natural bone tissue will be regenerated.

Source: the University of Twente

Future Gadgets that Will Keep Vegetables Fresh Naturally

 

FreshvegetablesConceptfuture2 Future Gadgets that Will Keep Vegetables Fresh Naturally

The innovative plant perf concept aims to deliver fresh fruits and vegetables to the consumers which eliminate using chemicals that are harmful for health. The plants get attached with the device right after being cut from the field to get the nutrients from the perf. The body of the device is made from corn starch plastic and features three main parts, the main body, bottle top and nutritious liquid. The long top end of the bottle remains locked when the farmer collects it and during harvesting, the farmer cuts the fruits and insert the stem inside the bottle and locks it by pulling the top upward. Not only fruits, it can also be used to keep flowers fresh for longer period of time according to the user’s need.

FreshvegetablesConceptfuture4 Future Gadgets that Will Keep Vegetables Fresh Naturally

FreshvegetablesConceptfuture31 Future Gadgets that Will Keep Vegetables Fresh Naturally

FreshvegetablesConceptfuture5 Future Gadgets that Will Keep Vegetables Fresh Naturally

Einstein for everyone

 

 

Einstein