quinta-feira, 28 de agosto de 2014

Hidden Obstacles for Google’s Self-Driving Cars

 

 

Impressive progress hides major limitations of Google’s quest for automated driving.

Why It Matters

More than 1.24 million people die worldwide as a result of road traffic accidents each year, according to the World Health Organization.

Watch out: Google’s self-driving car can “see” moving objects like other cars in real time. But only a pre-made map lets it know about the presence of certain stationary objects, like traffic lights.

Would you buy a self-driving car that couldn’t drive itself in 99 percent of the country? Or that knew nearly nothing about parking, couldn’t be taken out in snow or heavy rain, and would drive straight over a gaping pothole?

If your answer is yes, then check out the Google Self-Driving Car, model year 2014.

Of course, Google isn’t yet selling its now-famous robotic vehicle and has said that its technology will be thoroughly tested before it ever does. But the car clearly isn’t ready yet, as evidenced by the list of things it can’t currently do—volunteered by Chris Urmson, director of the Google car team.

Google’s cars have safely driven more than 700,000 miles. As a result, “the public seems to think that all of the technology issues are solved,” says Steven Shladover, a researcher at the University of California, Berkeley’s Institute of Transportation Studies. “But that is simply not the case.”

No one knows that better than Urmson. But he says he is optimistic about tackling outstanding challenges and that it’s “going to happen more quickly than many people think.”

Google often leaves the impression that, as a Google executive once wrote, the cars can “drive anywhere a car can legally drive.” However, that’s true only if intricate preparations have been made beforehand, with the car’s exact route, including driveways, extensively mapped. Data from multiple passes by a special sensor vehicle must later be pored over, meter by meter, by both computers and humans. It’s vastly more effort than what’s needed for Google Maps.

Google’s cars are better at handling some mapping omissions than others. If a new stop light appeared overnight, for example, the car wouldn’t know to obey it. However the car would slow down or stop if its on-board sensors detected any traffic or obstacles in its path.

Google’s cars can detect and respond to stop signs that aren’t on its map, a feature that was introduced to deal with temporary signs used at construction sites. But in a complex situation like at an unmapped four-way stop the car might fall back to slow, extra cautious driving to avoid making a mistake. Google says that its cars can identify almost all unmapped stop signs, and would remain safe if they miss a sign because the vehicles are always looking out for traffic, pedestrians and other obstacles.

Alberto Broggi, a professor studying autonomous driving at Italy’s Università di Parma, says he worries about how a map-dependent system like Google’s will respond if a route has seen changes.

Michael Wagner, a Carnegie Mellon robotics researcher studying the transition to autonomous driving, says it is important for Google to be open about what its cars can and cannot do. “This is a very early-stage technology, which makes asking these kinds of questions all the more justified.”

Maps have so far been prepared for only a few thousand miles of roadway, but achieving Google’s vision will require maintaining a constantly updating map of the nation’s millions of miles of roads and driveways. Urmson says Google’s researchers “don’t see any particular roadblocks” to accomplishing that. When a Google car sees a new permanent structure such as a light pole or sign that it wasn’t expecting it sends an alert and some data to a team at Google in charge of maintaining the map.

In May, Google announced that all its future cars would be totally driver-free, without even a steering wheel. It cited the difficulties in assuring that a standby human driver would always be ready to take over. The company says it will initially test the new cars with the added controls now required by states that allow testing. But winning approval to test, much less market, a totally robotic car “would be a tremendous leap,” says David Fierro, spokesman for the DMV in Nevada, where Google now runs tests.

Among other unsolved problems, Google has yet to drive in snow, and Urmson says safety concerns preclude testing during heavy rains. Nor has it tackled big, open parking lots or multilevel garages. The car’s video cameras detect the color of a traffic light; Urmson said his team is still working to prevent them from being blinded when the sun is directly behind a light. Despite progress handling road crews, “I could construct a construction zone that could befuddle the car,” Urmson says.

Pedestrians are detected simply as moving, column-shaped blurs of pixels—meaning, Urmson agrees, that the car wouldn’t be able to spot a police officer at the side of the road frantically waving for traffic to stop.

The car’s sensors can’t tell if a road obstacle is a rock or a crumpled piece of paper, so the car will try to drive around either. Urmson also says the car can’t detect potholes or spot an uncovered manhole if it isn’t coned off.

Urmson says these sorts of questions might be unresolved simply because engineers haven’t yet gotten to them.

But researchers say the unsolved problems will become increasingly difficult. For example, John Leonard, an MIT expert on autonomous driving, says he wonders about scenarios that may be beyond the capabilities of current sensors, such as making a left turn into a high-speed stream of oncoming traffic.

Challenges notwithstanding, Urmson wants his cars to be ready by the time his 11-year-old son is 16, the legal driving age in California. “It’s my personal deadline,” he says.

This story has been updated by editors after clarifying information from Google.

 

Screenshot_15

Inside the teenage brain: New studies explain risky behavior

 


Young man (stock image). "Psychologists, psychiatrists, educators, neuroscientists, criminal justice professionals and parents are engaged in a daily struggle to understand and solve the enigma of teenage risky behaviors," Bhide said. "Such behaviors impact not only the teenagers who obviously put themselves at serious and lasting risk but also families and societies in general.

It's common knowledge that teenage boys seem predisposed to risky behaviors. Now, a series of new studies is shedding light on specific brain mechanisms that help to explain what might be going on inside juvenile male brains.

Florida State University College of Medicine Neuroscientist Pradeep Bhide brought together some of the world's foremost researchers in a quest to explain why teenagers -- boys, in particular -- often behave erratically.

The result is a series of 19 studies that approached the question from multiple scientific domains, including psychology, neurochemistry, brain imaging, clinical neuroscience and neurobiology. The studies are published in a special volume of Developmental Neuroscience, "Teenage Brains: Think Different?"

"Psychologists, psychiatrists, educators, neuroscientists, criminal justice professionals and parents are engaged in a daily struggle to understand and solve the enigma of teenage risky behaviors," Bhide said. "Such behaviors impact not only the teenagers who obviously put themselves at serious and lasting risk but also families and societies in general.

"The emotional and economic burdens of such behaviors are quite huge. The research described in this book offers clues to what may cause such maladaptive behaviors and how one may be able to devise methods of countering, avoiding or modifying these behaviors."

An example of findings published in the book that provide new insights about the inner workings of a teenage boy's brain:

• Unlike children or adults, teenage boys show enhanced activity in the part of the brain that controls emotions when confronted with a threat. Magnetic resonance scanner readings in one study revealed that the level of activity in the limbic brain of adolescent males reacting to threat, even when they've been told not to respond to it, was strikingly different from that in adult men.

• Using brain activity measurements, another team of researchers found that teenage boys were mostly immune to the threat of punishment but hypersensitive to the possibility of large gains from gambling. The results question the effectiveness of punishment as a deterrent for risky or deviant behavior in adolescent boys.

• Another study demonstrated that a molecule known to be vital in developing fear of dangerous situations is less active in adolescent male brains. These findings point towards neurochemical differences between teenage and adult brains, which may underlie the complex behaviors exhibited by teenagers.

"The new studies illustrate the neurobiological basis of some of the more unusual but well-known behaviors exhibited by our teenagers," Bhide said. "Stress, hormonal changes, complexities of psycho-social environment and peer-pressure all contribute to the challenges of assimilation faced by teenagers.

"These studies attempt to isolate, examine and understand some of these potential causes of a teenager's complex conundrum. The research sheds light on how we may be able to better interact with teenagers at home or outside the home, how to design educational strategies and how best to treat or modify a teenager's maladaptive behavior."

Bhide conceived and edited "Teenage Brains: Think Different?" His co-editors were Barry Kasofsky and B.J. Casey, both of Weill Medical College at Cornell University. The book was published by Karger Medical and Scientific Publisher of Basel, Switzerland. More information on the book can be found at: http://www.karger.com/Book/Home/261996

The table of contents to the special journal volume can be found at: http://www.karger.com/Journal/Issue/261977

 

Screenshot_16


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.

Three-quarters of depressed cancer patients do not receive treatment for depression; new approach could transform care.

 

Major depression in cancer patients

Three papers reveal that around three-quarters of cancer patients who have major depression are not currently receiving treatment for depression, and that a new integrated treatment program is strikingly more effective at reducing depression and improving quality of life than current care.

 

Screenshot_16

Progress on New Way to Generate Electricity

 

Powerful new way to generate electricity

About four years ago, researchers in Michael Strano’s chemical engineering lab at MIT coated a short piece of yarn made of carbon nanotubes with TNT and lit one end with a laser. It sparkled and burned like a fuse, demonstrating a new way to generate electricity that produces phenomenal amounts of power.

Why It Matters

Most generators waste large amounts of energy.

 

Screenshot_15

It's easy to assemble the TV-B-Gone kit; this guide walks you through the process step-by-step.

 

TV-b-gone-kit

Tired of all those LCD TVs everywhere? Want a break from advertisements while you’re trying to eat? Want to zap screens from across the street? The TV-B-Gone kit is just what you need. With just a simple click of the button you can turn off any TV from 100’s of feet away. Zap!

 

Screenshot_14

Large list of useful computer repair CD’s

 

Useful computer repair CD's

 

 

One of our Technibble forum members, PcTek9, and a handful of other Technibble members have compiled a large list of CDs for various computer repair tasks. In this list, the following types of CD are available for download: Antivirus Boot CDs, Recovery Disks, Hardware Diagnostic Boot CDs, Network Testing/Monitoring, Data Recovery Boot CDs and Special Purpose CDs.

 

Screenshot_13

Oblique wing

 

NASA AS-1 – retired – (link)

NASA_AD-1_in_flight - oblique wing

The NASA AD-1 was both an aircraft and an associated flight test program conducted between 1979 and 1982 at the NASA Dryden Flight Research Center, Edwards California, which successfully demonstrated an aircraft wing that could be pivoted obliquely from zero to 60 degrees during flight.

The unique oblique wing was demonstrated on a small, subsonic jet-powered research aircraft called the AD-1 (Ames Dryden -1). The aircraft was flown 79 times during the research program, which evaluated the basic pivot-wing concept and gathered information on handling qualities and aerodynamics at various speeds and degrees of pivot.