sexta-feira, 11 de julho de 2014

On the link between periodontitis and atherosclerosis


Chronic oral infection with the periodontal disease pathogen, Porphyromonas gingivalis, not only causes local inflammation of the gums leading to tooth loss but also is associated with an increased risk of atherosclerosis. A study published on July 10th in PLOS Pathogens now reveals how the pathogen evades the immune system to induce inflammation beyond the oral cavity.

Like other gram-negative bacteria, P. gingivalis has an outer layer that consists of sugars and lipids. The mammalian immune system has evolved to recognize parts of this bacterial coating, which then triggers a multi-pronged immune reaction. As part of the "arms race" between pathogens and their hosts, several types of gram-negative bacteria, including P. gingivalis, employ strategies by which they alter their outer coats to avoid the host immune defense.

Caroline Attardo Genco, from Boston University School of Medicine, USA, in collaboration with Richard Darveau, at the University of Washington School of Dentistry, USA, and colleagues focused on the role of a specific lipid expressed on the outer surface of P. gingivalis, called lipid A, which is known to interact with a key regulator of the host's immune system called TLR4. P. gingivalis can produce a number of different lipid A versions, and the researchers wanted to clarify how these modify the immune response and contribute to the ability of the pathogen to survive and cause inflammation -- both locally, resulting in oral bone loss, and systemically, in distant blood vessels.

They constructed genetically modified strains of P. gingivalis with two distinct lipid A versions. The resulting bacteria produced either lipid A that activated TLR4 (called "agonist") or lipid A that interacted with TLR4 but blocked activation ("antagonist"). Utilizing these strains, they demonstrate that P. gingivalis production of antagonist lipid A renders the pathogen resistant to host bacterial killing responses. This facilitates bacterial survival in macrophages, specific immune cells that normally not only gobble up the bacteria but also "digest" and kill them.

When the researchers infected atherosclerosis-prone mice with the P. gingivalis TLR4 antagonist strain, they found that this exacerbates inflammation in the blood vessels and promotes atherosclerosis. In contrast, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A variations, which demonstrates that there are distinct mechanisms for induction of local versus systemic inflammation.

The researchers conclude, "P. gingivalis modifies its lipid A structure in order to evade host defenses and establish chronic infection leading to persistent systemic low-grade inflammation." They go on to state that "uniquely among gram-negative pathogens, P. gingivalis evasion of TLR4-mediated host immunity results in progression of inflammation at a site that is distant from local infection by gaining access to the vasculature."


Story Source:

The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Connie Slocum, Stephen R. Coats, Ning Hua, Carolyn Kramer, George Papadopoulos, Ellen O. Weinberg, Cynthia V. Gudino, James A. Hamilton, Richard P. Darveau, Caroline A. Genco. Distinct Lipid A Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation. PLoS Pathogens, 2014; 10 (7): e1004215 DOI: 10.1371/journal.ppat.1004215

DARPA taps Lawrence Livermore to develop world's first neural device to restore memory


Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory.

The Department of Defense's Defense Advanced Research Projects Agency (DARPA) awarded Lawrence Livermore National Laboratory (LLNL) up to $2.5 million to develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory, DARPA officials announced this week.

The research builds on the understanding that memory is a process in which neurons in certain regions of the brain encode information, store it and retrieve it. Certain types of illnesses and injuries, including Traumatic Brain Injury (TBI), Alzheimer's disease and epilepsy, disrupt this process and cause memory loss. TBI, in particular, has affected 270,000 military service members since 2000.

The goal of LLNL's work -- driven by LLNL's Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA) and Medtronic -- is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals' ability to form new memories and access previously formed ones.

The research is funded by DARPA's Restoring Active Memory (RAM) program.

Specifically, the Neural Technology group will seek to develop a neuromodulation system -- a sophisticated electronics system to modulate neurons -- that will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL's Center for Bioengineering.

"Currently, there is no effective treatment for memory loss resulting from conditions like TBI," said LLNL's project leader Satinderpall Pannu, director of the LLNL's Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. "This is a tremendous opportunity from DARPA to leverage Lawrence Livermore's advanced capabilities to develop cutting-edge medical devices that will change the health care landscape."

LLNL will develop a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients' brains. The device -- implanted into the entorhinal cortex and hippocampus -- will allow for stimulation and recording from 64 channels located on a pair of high-density electrode arrays. The entorhinal cortex and hippocampus are regions of the brain associated with memory.

The arrays will connect to an implantable electronics package capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom RF-coil system.

Designed to last throughout the duration of treatment, the device's electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer.

Using the Center for Bioengineering's capabilities, Pannu and his team of engineers have achieved 25 patents and many publications during the last decade. The team's goal is to build the new prototype device for clinical testing by 2017.

Lawrence Livermore's collaborators, UCLA and Medtronic, will focus on conducting clinical trials and fabricating parts and components, respectively.

"The RAM program poses a formidable challenge reaching across multiple disciplines from basic brain research to medicine, computing and engineering," said Itzhak Fried, lead investigator for the UCLA on this project andprofessor of neurosurgery and psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA and the Semel Institute for Neuroscience and Human Behavior. "But at the end of the day, it is the suffering individual, whether an injured member of the armed forces or a patient with Alzheimer's disease, who is at the center of our thoughts and efforts."

LLNL's work on the Restoring Active Memory program supports President Obama's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative.

"Our years of experience developing implantable microdevices, through projects funded by the Department of Energy (DOE), prepared us to respond to DARPA's challenge," said Lawrence Livermore Engineer Kedar Shah, a project leader in the Neural Technology group.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.

Drinking alcohol provides No heart health benefit, new study shows

 

July 10, 2014

University of Pennsylvania School of Medicine

Reducing the amount of alcoholic beverages consumed, even for light-to-moderate drinkers, may improve cardiovascular health, including a reduced risk of coronary heart disease, lower body mass index and blood pressure, according to a new multi-center study. The latest findings call into question previous studies which suggest that consuming light-to-moderate amounts of alcohol may have a protective effect on cardiovascular health.


Reducing the amount of alcoholic beverages consumed, even for light-to-moderate drinkers, may improve cardiovascular health.

Reducing the amount of alcoholic beverages consumed, even for light-to-moderate drinkers, may improve cardiovascular health, including a reduced risk of coronary heart disease, lower body mass index (BMI) and blood pressure, according to a new multi-center study published in The BMJ and co-led by the Perelman School of Medicine at the University of Pennsylvania. The latest findings call into question previous studies which suggest that consuming light-to-moderate amounts of alcohol (0.6-0.8 fluid ounces/day) may have a protective effect on cardiovascular health.

The new research reviewed evidence from more than 50 studies that linked drinking habits and cardiovascular health for over 260,000 people. Researchers found that individuals who carry a specific gene which typically leads to lower alcohol consumption over time have, on average, superior cardiovascular health records. Specifically, the results show that individuals who consume 17 percent less alcohol per week have on average a 10 percent reduced risk of coronary heart disease, lower blood pressure and a lower Body Mass Index.

"These new results are critically important to our understanding of how alcohol affects heart disease. Contrary to what earlier reports have shown, it now appears that any exposure to alcohol has a negative impact upon heart health," says co-lead author Michael Holmes, MD, PhD, research assistant professor in the department of Transplant Surgery at the Perelman School of Medicine at the University of Pennsylvania. "For some time, observational studies have suggested that only heavy drinking was detrimental to cardiovascular health, and that light consumption may actually be beneficial. This has led some people to drink moderately based on the belief that it would lower their risk of heart disease. However, what we're seeing with this new study, which uses an investigative approach similar to a randomized clinical trial, is that reduced consumption of alcohol, even for light-to-moderate drinkers, may lead to improved cardiovascular health."

In the new study, researchers examined the cardiovascular health of individuals who carry a genetic variant of the 'alcohol dehydrogenase 1B' gene, which is known to breakdown alcohol at a quicker pace. This rapid breakdown causes unpleasant symptoms including nausea and facial flushing, and has been found to lead to lower levels of alcohol consumption over time. By using this genetic marker as an indicator of lower alcohol consumption, the research team was able to identify links between these individuals and improved cardiovascular health.

The study was funded by the British Heart Foundation and the Medical Research Council, and was an international collaboration that included 155 investigators from the UK, continental Europe, North America, and Australia.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.