segunda-feira, 2 de março de 2015

Pens filled with high-tech inks for do-it-yourself sensors

Researchers drew sensors capable of detecting pollutants on a leaf.

A new simple tool developed by nanoengineers at the University of California, San Diego, is opening the door to an era when anyone will be able to build sensors, anywhere, including physicians in the clinic, patients in their home and soldiers in the field. The team from the University of California, San Diego, developed high-tech bio-inks that react with several chemicals, including glucose. They filled off-the-shelf ballpoint pens with the inks and were able to draw sensors to measure glucose directly on the skin and sensors to measure pollution on leaves.

Skin and leaves aren't the only media on which the pens could be used. Researchers envision sensors drawn directly on smart phones for personalized and inexpensive health monitoring or on external building walls for monitoring of toxic gas pollutants. The sensors also could be used on the battlefield to detect explosives and nerve agents.

The team, led by Joseph Wang, the chairman of the Department of NanoEngineering at the University of California, San Diego, published their findings in the Feb. 26 issue of Advanced Healthcare Materials. Wang also directs the Center for Wearable Sensors at UC San Diego.

"Our new biocatalytic pen technology, based on novel enzymatic inks, holds considerable promise for a broad range of applications on site and in the field," Wang said.

The biggest challenge the researchers faced was making inks from chemicals and biochemicals that aren't harmful to humans or plants; could function as the sensors' electrodes; and retain their properties over long periods in storage and in various conditions. Researchers turned to biocompatible polyethylene glycol, which is used in several drug delivery applications, as a binder. To make the inks conductive to electric current they used graphite powder. They also added chitosan, an antibacterial agent which is used in bandages to reduce bleeding, to make sure the ink adhered to any surfaces it was used on. The inks' recipe also includes xylitol, a sugar substitute, which helps stabilize enzymes that react with several chemicals the do-it-yourself sensors are designed to monitor.

Reusable glucose sensors

Wang's team has been investigating how to make glucose testing for diabetics easier for several years. The same team of engineers recently developed non-invasive glucose sensors in the form of temporary tattoos. In this study, they used pens, loaded with an ink that reacts to glucose, to draw reusable glucose-measuring sensors on a pattern printed on a transparent, flexible material which includes an electrode. Researchers then pricked a subject's finger and put the blood sample on the sensor. The enzymatic ink reacted with glucose and the electrode recorded the measurement, which was transmitted to a glucose-measuring device. Researchers then wiped the pattern clean and drew on it again to take another measurement after the subject had eaten.

Researchers estimate that one pen contains enough ink to draw the equivalent of 500 high-fidelity glucose sensor strips. Nanoengineers also demonstrated that the sensors could be drawn directly on the skin and that they could communicate with a Bluetooth-enabled electronic device that controls electrodes called a potentiostat, to gather data.

Sensors for pollution and security

The pens would also allow users to draw sensors that detect pollutants and potentially harmful chemicals sensors on the spot. Researchers demonstrated that this was possible by drawing a sensor on a leaf with an ink loaded with enzymes that react with phenol, an industrial chemical, which can also be found in cosmetics, including sunscreen. The leaf was then dipped in a solution of water and phenol and the sensor was connected to a pollution detector. The sensors could be modified to react with many pollutants, including heavy metals or pesticides.

Next steps include connecting the sensors wirelessly to monitoring devices and investigating how the sensors perform in difficult conditions, including extreme temperatures, varying humidity and extended exposure to sunlight.

Plans unveiled for Google's new Mountain View headquarters

 

Google has commissioned top-tier architects Bjarke Ingels (of BIG) and Thomas Heatherwick ...

Google has commissioned top-tier architects Bjarke Ingels (of BIG) and Thomas Heatherwick to design its new green headquarters in Mountain View, California (Image: Google)

Image Gallery (9 images)

Google has released renders and preliminary information regarding its planned new headquarters in Mountain View, California. Finer details are unavailable at this stage, but the firm has commissioned top-tier architects Bjarke Ingels (of BIG) and Thomas Heatherwick to handle the design, and what information we do have points toward a sustainable, flexible, and future-proof headquarters for the company.

In contrast with the forbidding closed loop design of Apple's sustainable Cupertino campus by Norman Foster, Google's new digs appear more fragmented, open, and accessible.

"We're really making sure that we make spaces very open and accessible, so it's not just for Googlers but for anyone in the area to come by," says David Radcliffe, the firm's Vice President of Real Estate.

Google says a significant portion of the HQ's energy needs will be met sustainably, but (e...

Intended for the North Bay Shore area of Mountain View, the renders evoke more of a futuristic college campus feel than that of a secretive technology center, and it comprises a number of buildings with large transparent roofs that allow plenty of natural light. The renders also show a mash-up of both Ingels' and Heatherwick's style in places (such as the above image, for example), and it will be interesting to see if the end result will be a clash of egos or that of two "starchitects" complimenting each other's strengths.

The proposal features bike paths, lakes, and greenery, and cyclists are offered shelter from the rain in some areas with large solar canopies. Google says a significant portion of the HQ's energy needs will be met sustainably, but we've no word on how much yet, nor of any other sustainable tech in the works. Car parks are hidden from sight underground, and the renders show a focus on landscaping in a concerted effort to offer visitors and staff a greater connection with nature.

Intended for the North Bay Shore area of Mountain View, the renders revealed so far show a...

Another potentially interesting but vague nugget of information revealed is that the headquarters will apparently be flexible and future-proof. "Instead of constructing immoveable concrete buildings, we’ll create lightweight block-like structures which can be moved around easily as we invest in new product areas," added Radcliffe.

From this, we could infer anything from a novel system of movable buildings to simply easily-dismantled prefabs that can be extended when required. Time will tell.

 

Source: Google

 

Hey, I am not W.R.

Eu não sou Wynona

Mensagem do dia - 1

Capturas div (3)

Bringing clean energy a step closer

Bringing clean energy a step closer

February 27, 2015

Case Western Reserve University

Researchers have made an inexpensive metal-free catalyst that performs as well as costly metal catalysts at speeding the oxygen reduction reaction in an acidic fuel cell, and is more durable. The catalyst is made of sheets of nitrogen-doped graphene that provides great surface area, carbon nanotubes that enhance conductivity, and carbon black particles that separate the layers allowing the electrolyte and oxygen to flow freely, which greatly increased performance and efficiency.


Structure enables a carbon-based catalyst to perform comparably with metal catalysts in an acidic fuel cell. A: Carbon black agglomerates maintain a clear distance between graphene sheets imbedded with carbon nanotubes, allowing oxygen and electrolyte to flow through and speeding the oxygen-reduction reaction. B: Without the agglomerates, the sheets stack closely, stalling the reaction.

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst performs as well as costly metal catalysts at speeding the oxygen reduction reaction in an acidic fuel cell.

The carbon-based catalyst also corrodes less than metal-based materials and has proved more durable.

The findings are major steps toward making low-cost catalysts commercially available, which could, in turn, reduce the cost to generate clean energy from PEM fuel cells--the most common cell being tested and used in cars and stationary power plants. The study was recently published online in the journal Science Advances.

"This definitely should move the field forward," said Liming Dai, the Kent Hale Smith Professor of macromolecular science and engineering at Case Western Reserve and senior author of the research. "It's a major breakthrough for commercialization."

Dai worked with lead investigator Jianglan Shui, who was a CWRU postdoctoral researcher and is now a materials science and engineering professor at Beihang University, Beijing; PhD student Min Wang, who did some of the testing; and postdoctoral researcher Fen Du, who made the materials. The effort builds on the Dai lab's earlier work developing carbon-based catalysts that significantly outperformed platinum in an alkaline fuel cell.

The group pursued a non-metal catalyst to perform in acid because the standard bearer among fuel cells, the PEM cell, uses an acidic electrolyte. PEM stands for both proton exchange membrane and polymer electrolyte membrane, which are interchangeable names for this type of cell.

The key to the new catalyst is its rationally-designed porous structure, Dai said. The researchers mixed sheets of nitrogen-doped graphene, a single-atom thick, with carbon nanotubes and carbon black particles in a solution, then freeze-dried them into composite sheets and hardened them.

Graphene provides enormous surface area to speed chemical reactions, nanotubes enhance conductivity, and carbon black separates the graphene sheets for free flow of the electrolyte and oxygen, which greatly increased performance and efficiency. The researchers found that those advantages were lost when they allowed composite sheets to arrange themselves in tight stacks with little room between layers.

A fuel cell converts chemical energy into electrical energy by removing electrons from a fuel, such as hydrogen, at the cell's anode, or positive electrode. This creates a current.

Hydrogen ions produced are carried by the electrolyte through a membrane to the cathode, or negative electrode, where the oxygen reduction reaction takes place. Oxygen molecules are split and reduced by the addition of electrons and combine with the hydrogen ions to form water and heat--the only byproducts.

Testing showed the porous catalyst performs better and is more durable than the state-of-the-art nonprecious iron-based catalyst. Dai's lab continues to fine-tune the materials and structure as well as investigate the use of non-metal catalysts in more areas of clean energy.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jianglan Shui, Min Wang, Feng Du, Liming Dai. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances, Feb 27, 2015 DOI: 10.1126/sciadv.1400129

 

Samsung and Oculus have a new Gear VR for the Galaxy S6 and Galaxy S6 edge

 

The new Samsung Gear VR, which uses a GS6 or GS6 edge instead of a Note 4

The new Samsung Gear VR, which uses a GS6 or GS6 edge instead of a Note 4

Image Gallery (2 images)

Samsung's Gear VR still hasn't launched its full store with paid apps (it's coming to the US later this month), but the virtual reality headset is now compatible with two more phones. While the original Gear VR Innovator Edition was only compatible with the Galaxy Note 4, the new version adds support for the new Galaxy S6 and Galaxy S6 edge (along with a few other bells and whistles).

The new Gear VR has the same basic design as the original Note 4 version, but it is 15 percent smaller. It also gets a few more upgrades thanks to the new pair of phones: benefiting from their higher pixel density and faster performance. It also has a 96-degree field of view.

The biggest update, though, is that the new Gear VR will have better battery life. Now when you plug either the GS6 or GS6 edge into the headset's microUSB port, it will draw power from the headset. So when you sit down for a lengthy VR session, you don't have to worry (as much) about draining your phone's battery for the rest of the day.

The original Gear VR (pictured) now has an improved sequel that's compatible with the new ...

The biggest problem with the original Gear VR (above) was its tendency to overheat, so we'll have to wait and see if the new version does any better. Its Exynos processor, in place of the Note's Snapdragon, could potentially help out in this department.

Not many more details on the new headset at the moment, but we'll keep you posted as pricing and release info trickles in.

For more on the Note 4 version, you can hit up our full Gear VR review.

 

SanDisk crams 200 GB into the world's highest capacity microSD card

 

SanDisk's new microSD card packs an impressive 200 GB of storage

SanDisk's new microSD card packs an impressive 200 GB of storage

With all the high quality snaps, audio and video that we fill our mobile devices with these days, it doesn't take much to for the onboard storage to hit capacity. But SanDisk has just introduced a new microSD card designed to provide a little more storage breathing room. The SanDisk Ultra microSDXC UHS-I card, Premium Edition, packs a whopping 200 GB of storage capacity, while retaining the same diminutive microSD form factor.

Following last year's Mobile World Congress, where SanDisk rolled up with a 128 GB card to offer the world's largest capacity microSDXC card, the storage specialist has managed to increase the capacity by an impressive 56 percent. The latest addition to the microSDXC UHS-I range makes use of the same technology as the 128 GB version, but a new design and production process has enabled the company to squeeze in more bits per die.

Capable of delivering transfer speeds of 90 MB per second, the card is targeted primarily for use with Android devices. It is worth noting, however, that Samsung's newest flagship phones, the Galaxy S6 and Galaxy S6 edge, themselves unveiled at World Mobile Congress over the weekend, do away with microSD slots, so the whopping bump in storage will be out of reach for some.

SanDisk says its 200 GB microSD card will be available worldwide in the second quarter of 2015 and priced at US$400.

Source: SanDisk

 

How drones are poised to help build the cities of tomorrow

 

Drones are already proving incredibly efficient at aerial mapping on building sites, but a...

Drones are already proving incredibly efficient at aerial mapping on building sites, but are they capable of more? (Photo: Skycatch)

Image Gallery (17 images)

Over time we have gotten used to machines assuming certain roles in society, but even at the dawn of the the age of robotics, some types of skilled labor still seem beyond their reach. After all, how does a machine wield a hammer and overcome the perpetual problem-solving involved in putting together a house or a high-rise? While we might be some ways off from watching buildings sprout out of the ground at the push of a button, flying robots are already carrying out surveying and mapping tasks on construction sites from the US to Japan. But leading researchers are adamant that when it comes to automating the building industry, these machines have more to offer.

The value of drones in construction, at least for the time being, is more or less tied to their ability to venture where humans and heavy machinery cannot. This dictates that the vehicles remain small, agile and with minimal payload, zipping around with onboard high-res cameras and relaying progress shots and aerial surveys to construction teams on the ground. This might sound like little more than a negligible cost-cutting, but drones are already forming an integral part of business operations for innovative construction firms the world over.

In Japan, an aging population has the construction industry turning to new technology to help build the infrastructure of the future. Leading the charge is the multinational machinery maker Komatsu which has just announced the launch of a new service called Smart Construction, aimed at helping fill Japan's void of a fit young workforce with cutting edge information and communication technologies. The service includes a a platform called KomConnect that will connect machinery and workers to the cloud to improve overall efficiency, artificial intelligence-assisted control for operating machinery and, of course, drones.

Japanese multinational machinery maker Komatsu has announced the launch of a new service c...

Komatsu has turned to San Francisco-based drone service provider Skycatch to put UAVs to use in its Smart Construction venture. Skycatch's vehicles will be deployed to conduct surveys and produce 3D models, culminating in live interactive maps of the job sites.

"The map comes to life on our dashboard, so to speak, and clients can do things like impose overlays of plans onto what’s actually been built, calculate volumetric measurements, and make annotations for themselves or to share with co-workers," Skycatch CEO Christian Sanz tells Gizmag.

In the view of Sanz, the potential of drones in construction is becoming too great to ignore.

"Right now, drone technology is providing a competitive edge to the companies who’ve successfully adopted it," he says. "They use their equipment and resources more efficiently, communicate better through accurate maps and data, and now have highly quantitative means of measuring their progress against their schedule. In the future, the construction industry will realize aggregate benefits such as a much better safety record and fewer projects that are completely late and off budget."

Though Komatsu prides itself on a history of technological innovation, it is far from the only construction company enlisting armies of flying robots. In all corners of the globe, firms are recognizing the aerial surveying potential of drones (a capability that has seen them used in applications as diverse as the hunting invasive plant species in Australia and warding off rhino poachers in Kenya.)

For the past three years, Siemens has been using drones to conduct surveying work above the Aspern Vienna Urban Lakeside project in Austria, one the largest urban development projects in Europe. Last month it unveiled a pilot project whereby aerial data collected by drones combines with image processing software to visualize energy losses across entire neighborhoods. The data is then presented as thermal maps, making it easier to identify which buildings could be renovated to be made more energy efficient.

Last month, Siemens unveiled a pilot project whereby aerial data collected by drones combi...

Down under, Australian firm Soto Consulting Engineers are using drones to monitor heavy industry and mining sites, scoping out large concrete structures, boilers and skyline conveyers to identify hard-to-spot structural problems.

"The high-res cameras allow us to pinpoint corrosion and use that as part of our report," Jim Allan, Chief Operating Officer at Soto explains. "The main benefit is the cost saving. It alleviates the need for cages and harnesses and safety requirements are reduced."

And according to Rory San Miguel, founder of Australian startup Propeller Aerobotics, there are significant savings to be made. Much like Skycatch in the US, his company offers drone services to companies looking for cheaper, higher quality aerial data. His aim is to create a standardized mapping interface for the surveying industry so that companies can benefit from consistent, easily digestible data.

"There is a AU$4 billion surveying and mapping industry in Australia, which at the moment doesn't involve drones," he tells Gizmag. "Surveyors are using tools like LIDAR that are very expensive and work very slowly. If we have a drone take off and fly in a grid pattern, taking a photo every 20 m (65.6 ft), we can cover the entire site very quickly and build 3D renders with true absolute accuracy. Like Google Maps on steroids."

So through monitoring and aerial mapping, drones are proving indispensable for forward-thinking companies looking stay one step ahead. By negating the need for expensive and heavy-duty safety equipment the robots are saving time and money, while also delivering precise information more reliably than is otherwise possible. But are drones capable of contributing more to construction than just gathering data?

Back in 2011, a team of roboticists from ETH Zürich's Institute for Dynamic Systems and Control offered a glimpse of what might be possible. The researchers presented a 6-meter (20 ft) tall tower constructed from 1,500 polystyrene bricks, every one of which neatly assembled without any assistance from a human hand. One by one, a fleet of flying robots dropped the pieces into place, guided by mathematical algorithms that took digital design data and translated it into flight paths.

In 2011, researchers presented a six-meter (20 ft) tall tower constructed from 1,5000 poly...

In the time since, the team has continued to work on improving aerial construction and overcoming weaknesses such as payload capacity. Federico Augugliaro, a researcher at the Institute for Dynamic Systems and Control, says that no longer are the vehicles seen merely as passive onlookers capturing information about an environment, but are engaging with that environment in a meaningful way through manipulation, construction and the way they interact with humans.

"Unlike cranes, drones have the ability to reach any point in space," says Agugliaro. "To have drones work close to humans on a construction site, however, their size has to be kept rather small. This limits the amount of payload they can carry and the amount of construction material that can be moved around."

The team is looking to more than just software and controllers to dictate the drone's movement, and are developing techniques that enable humans to reposition the drones with their hands.

"For the situations when drones and people will work closely together, some sort of compliant behavior on the drone side is desirable, both for safety reasons and convenience," says Agugliaro. "For example, instead of using a remote to pilot the drone, one can simply push the drone away."

At the same time, the team is partnering with ETH Zürich Chair of Architecture and Digital Fabrication to investigate the kinds of structures drones might be capable of building.

"Aerial robots are generic and can be equipped with different tools to transport and manipulate material in different ways, but a key subject hereby is weight," Ammar Mirjan, a researcher at the Chair of Architecture and Digital Fabrication, tells Gizmag. "This motivates the investigation into lightweight construction systems. We are particularly interested in the fabrication of tensile structures such as cable-net structures and three-dimensional suspension structures that could not be built with other fabrications methods."

Researchers at ETH Zurich are investigating how drones could be used to build tensile stru...

In Mirjan's view, a drone has a unique set of attributes that sets it apart from conventional construction machinery. The most obvious being that they are capable of flight, but also that they aren't limited to working in the one area and can access spaces that simply aren't accessible otherwise. This could see them carry out construction in hard-to-reach places like between buildings or sites without access to streets. Furthermore, they have the ability interact and collaborate on structures that cannot be built by single machines (like cranes that are limited to individual tasks) and can also move through and around materials during the process.

"Since it will be difficult to imitate existing construction processes because the tools are so radically different, it is likely that the conditions of how things are designed and built will be altered and hence resulting in new forms of architectural materialization," says Ammar. "History suggests that new tools and technologies often shift existing processes. Drones in construction will enable architectural materialization in ways we cannot imagine."

So while architectural practices may be adapted to suit the capabilities of drones in the future – optimizing a system by which they can work productively with lightweight materials is one way of overcoming the payload problem – it's not the only way researchers are approaching this dilemma.

In February of 2012, Indian roboticist Dr Vijay Kumar delivered a TED Talk revealing the work of his engineering team at the University of Pennsylvania robotics lab. He presented a video demonstrating a fleet of robots flying in tight, centimeter-perfect formations, requiring them to calculate control commands 100 times per second to avoid crashing into one another. Banding together to form neat squares, rolling figure eights and various other patterns, the choreography on show certainly made for an impressive spectacle, but held more value than was reflected by the wows in the audience. As explained by Kumar, with an ability to fly in effect as one solid shape, it follows that the strength and carrying capacity of the drones multiplies.

Among the research projects currently underway at the Vijay Kumar Lab at the University of...

Among the research currently underway at the Vijay Kumar Lab at the University of Pennsylvania is a project called "Cooperative Manipulation and Transport." This seeks to solve the problem of how autonomous robots can made to work together to move large payloads by looking to nature. The team draws inspiration from ants and the way they collaborate to transport items of food much larger than the individual ants themselves. Kumar tells us that since his presentation in 2012, his team has improved the system in two ways. The first is the use of sensors, such as cameras, to determine the position of the neighboring robot, negating the need for communication between vehicles. The second is an ability to enroll larger numbers of small, ant-like robots in cooperative tasks. "Now theoretically, we can do hundreds," he says.

When it comes to overcoming the payload limitations of drones with a view to using them in construction, Kumar believes having them work together is the best way forward. While scaling the vehicles up could render them capable of moving heavy materials like girders and beams, this will also make them more cumbersome and sacrifice one of their key strengths: agility.

"Making individuals more powerful or stronger is possible, although this would make this large, unwieldy, heavy and awkward, especially when there might be need to maneuver in tight spaces and or adapt to differently sized payloads," he says. "This is why we prefer the small, modular solution. It is not only bio-inspired and elegant, it is also more practical and economical."

In Europe, a consortium of robotics professors from across the continent have come together to put this thinking into action. The Aerial Robotics Cooperative Assembly System (ARCAS) project is aimed at taking cooperative robot flight and using it to build real world structures. First though, it must establish solid scientific grounding for real world deployment of a flying robot workforce, and like other research efforts, is creating and solving new problems as it goes through the process.

"By using the cooperative control techniques we are developing in the ARCAS project, it will be possible to share the weight of the carried structures over a platoon of robots, hence further increasing the overall payload capacity," says Professor Vincenzo Lippiello from the University of Naples Federico II and one of the ARCAS researchers.

But Lippiello says this brings on another set of challenges, including designing control laws that take into account the destabilizing effect of having several drones hold onto the same object in the air and how sensing capabilities might be best integrated.

Another hurdle that the ARCAS project is working on overcoming is determining the ideal payload for the drones, a predicament that pretty well seems to hang over all researchers working in this area. Its first prototype tested indoors had a payload capacity of 6 kg (13.22 lb), the second saw this increased to 9 kg (20 lb) per vehicle. An upcoming prototype drone will have a total payload of between 15 and 20 kg (33 and 44 lb). It does say, however, that external factors could bring about advances in the carrying capacity.

"It is true that technological limitations exist and are mainly linked to the power to weight ratio of the current batteries," says Lippiello. "But the recent improvements of battery technology, mainly related to the cellular business, have also generated benefits for the drones performance in terms of autonomy and or payload."

Japanese machinery maker Komatsu has turned to San Francisco-based drone service provider ...

So the value of drones in construction in terms of aerial mapping and surveying is pretty well established, if not yet entirely realized by the industry. As successful firms such as Komatsu, Siemens and Soto Engineering continue to lead the way, it seems logical that there will be more to follow, especially when we consider that the technology is only becoming cheaper and its benefits harder to ignore.

But for actually building the structures themselves? The general line of thinking among the experts we've spoken to for this story is that the technology is at least five to ten years away. But it appears that if it does come to fruition, it will come with its share of limitations. Drones as construction machines may spawn a new niche in architectural design just as the team at ETH Zürich anticipate, or they may cooperate to make light work of moving heavy materials, but even then it seems they will only amount to a technology that complements the construction industry, rather than truly disrupts it.

What we also know is there will need to be a serious economic case to get the drones out of the lab and onto construction sites. Delivery drones were unheard of until Amazon came along and professed that they had the potential to turn its business model on its head, and now here we are, with the technology more or less there and pilots projects being carried out all around the world. For flying robots to form part of construction sites of the future, their capabilities will need to align with the private interests behind them. This might involve scenarios where it is just not cost effective or physically possible to put human workers on the job.

"It's likely to be somewhere where labor is prohibitively expensive, or workers cannot go there," imagines Dr Kumar. "Think of us colonizing Mars. The first things that build for us there will be robots."

So if you think that using drones in construction is a pretty out of this world idea, in the end, you may just be proven right.