The 3D-printed motorcycle, on display
The 3D-printed motorcycle, on display (Credit: TE Connectivity)
Image Gallery (7 images)
Unveiled at Rapid 2015 in Long Beach, California, TE Connectivity’s exercise in 3D printing demonstrates the ability to design a motorcycle on a computer, print it in plastic, add tires and a motor, then take it for a spin. In fact it may take a little more than that to actually end up with a complete functioning motorcycle; nonetheless, the concept is nothing short of exciting.
Considering that fundamental parts such as the frame and wheel bearings are entirely printed in plastic, one would agree that TE’s goal to portray a technology that manufactures load-bearing production parts has been achieved.
Modeled in a Harley-Davidson Softail fashion, the motorcycle measures around 8 ft (2.4 m) long, weighs 250 lb (113.4 kg) and consists of more components than its designers can account for. Its frame, printed after a process of trial and error, can support a total of 400 lb (181 kg) – that would be two adult passengers. Apart from the small electric motor and tires, some other outsourced parts include the braking system, electrical wiring, battery, belt drive, mirrors, sidestand and some bolts.
The highlight is, of course, its fully functioning status. A small 1 hp (750W) electric motor can power a 15 mph (24 km/h) ride for several minutes. Though this may not sound ground-breaking, it doesn’t necessarily need a bigger battery or a stronger engine to make a point as a showbike at a conference on printing, scanning and additive manufacturing. All that matters is that, after some 1,000 work hours and US$25,000, TE Connectivity has come up with a proper motorcycle indeed.
The main load-bearing parts were constructed with Fused Deposition Modeling (FDM) technology, the process of injecting layer upon layer of ABS (acrylonitrile butadiene styrene) plastic enriched with the heat resistant resin Ultem 9085. With this process, TE printed several parts with complex dynamic properties, such as the frame.
The wheel bearings sound tricky to fabricate, especially the rear one that was printed into a single piece with the hub and the drive sprocket. After some testing miles, both bearings reportedly held up against the load they must bear and the heat generated in the process. Equally difficult work has probably been involved in the fabrication of the wheel rims, which have to support real motorcycle tires with fully-inflated tubes.
Some metal parts like the headlight housing were printed in bronze through Direct Metal Laser Sintering (DMLS), where a laser melts the desired shape out of several layers of metal powder.
Apparently this is the second prototype or, more precisely, a rebuild of the first after it suffered some damage during transportation. Thankfully creative minds saw this as an opportunity rather than a calamity, finding the chance to make some improvements on the original design.
Although it seems highly improbable for an electronic connector and sensor manufacturer to build any more motorcycles, TE Connectivity’s achievement highlights some promising prospects. Already several DMLS applications are available to the automotive and aerospace industries though companies like EOS. Stratasys, whose printers worked overtime for this project in TE’s labs, is currently in a partnership with Ducati advising the Italians on developing in-house FDM prototyping. By printing functional prototype engines, Ducati has been able to cut the development time of a new Desmosedici race engine for MotoGP from 28 to only eight months. Benefits from this process are expected to reach production models sooner or later.
TE Connectivity initially thought of printing a model of a motorcycle as a display of sculpting skills. This had already been done, several times over. The idea of a functioning bike was born in the process, probably out of the realization that it could actually be done. After all, the first printed car was unveiled and driven in public just last September.
3D printing technology is advancing by leaps and bounds, having progressed in just a few years from forming simple ornamental plastic parts to generating dynamic structures that function within moving mechanisms. In this sense, this motorcycle that looks like a child’s toy may well prove to be a landmark product.
Sources: TE Connectivity, 3DPrint.com
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.